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Handout #1 LINEAR OPERATOR THEORY Professor Moseley

In this handout, we review our preview of linear operator theory in the previous chapter. 
The most important examples of linear operators are differential and integral operators and
operators defined by matrix multiplication.  These arise in many applications.  Lumped
parameter systems (e.g., linear circuits and mass spring systems) have a finite number of state
variables and give rise to discrete operators defined by matrices on finite dimensional vector
spaces such as Rn.  Differential and integral equations (e.g., Maxwell’s equations and the Navier-
Stokes equation) are used to model distributed (continuum) systems having an infinite number
of state variables and require infinite dimensional vector spaces (i.e., function spaces).  That is,
we have differential and integral operators on function spaces.

Even without covering any topics in differential equations, your background in calculus 
should be sufficient to understand discrete and continuous operators as linear operators on vector
spaces.  

A function or map T from one vector space  V  to another vector space W is often called
an operator.  If we wish to think geometrically (e.g., if V and W are  R2 or R3) rather than
algebraically we might call T a transformation.

DEFINITION 1.    Let V and W be vector spaces over the same field K.  An operator T:V  W is
said to be linear  if for all ,   V  and scalars  α,β,  it is true that

x y
                T( α  + β  ) = α T( )  + β T( ). (1)

x y x y

THEOREM 1.    Let V and W be vector spaces over the same field K.  An operator T: V  W   is
linear if and only if the following two properties are true:

i)  ,   ε V   implies   T(  +  )  =  T( ) + T( ) (2)
x y x y x y

         ii)  α  a scalar and  εV implies  T(α )  =  α T( ). (3)
x x x

EXAMPLE 1  Let the operator  T:Rn  Rm be defined by matrix multiplication of the column 
vector  by the m× n  matrix  A; that is, let

x

          T( ) =df   (4)
x A
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where  Rnx1 = Rn  and =      Rm×n.
x

x
x

x

nx1

1

2

n
































mxn
A

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

a a a
a a a

a a a

   
    
   
    
   
 

    

Ch. 6 Pg. 2



Then T is a linear operator.

EXAMPLE 2  Let I = (a,b).  The operator  D:C1(I,R)  C(I,R) be defined by

          D(f) =df (5)
df
dx

where  f ε C1(I,R) = {f:I  R:  exists and is continuous on I} and
df
dx

C(I,R) ={f:I  R : f is continuous on I}.  Then D is a linear operator.  We may restrict D to 
A (I, R) ={f:I  R:f is analytic on I} so that D:A (I, R) A (I, R) maps a vector space back to
itself.

DEFINITION #2.  Let T:VW be a mapping from a set V to a set W.  The set 
R(T) = { y W: there exists an xV such that y = T(x) } is called the range of T.  If W has an
additive structure (i.e., a binary operation which we call addition) with an additive identity which
we call 0, then the set N(T) = {xV: T(x) = 0} is called the null set of T (or nullity of T).

If T is a linear operator from a vector space V to another vector space W, we can say more.

THEOREM #2  Let T:VW be a linear operator from a vector space V to a vector space W.  The 
range of T R(T) = {  W: there exists an  V such that   = T( ) }, is a subspace of W

y x y x
and the  null set of T, N(T) = { V: T( ) = 0} is a subspace of V.

x x

We rename these sets.

DEFINITION #3.  Let T:VW be a linear operator from a vector space V to another vector
space  W.  The set R(T) = { W: there exists an V such that  = T( ) } is called the

y x y x
range space of  T and the set N(T) = { V: T( ) = 0} is called the null space of T. .

x x
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