DEFINITION \#1. Let $\mathrm{B}=\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\} \subseteq \mathrm{W} \subseteq \mathrm{V}$ where W is a subspace of the vector space V. Then B is a basis of W if
i) $\quad \mathrm{B}$ is linearly independent
ii) $\quad B$ spans W (i.e. Span $B=W$)

To prove that a set B is a basis (or basis set or base) for W we must show both i) and ii). We already have a method to show that a set is linearly independent. To use DUD consider the vector equation

$$
\begin{equation*}
c_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{c}_{2} \overrightarrow{\mathrm{x}}_{2}+\cdots+\mathrm{c}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\overrightarrow{0} \tag{1}
\end{equation*}
$$

in the unknown variables $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{k}}$ and show that the trivial solution $\mathrm{c}_{1}=\mathrm{c}_{2} \cdots=\mathrm{c}_{\mathrm{k}}=0$ is the only solution of (1). To show that B is a spanning set using DUD we must show that an arbitrary vector $\vec{b} \in W$ can be written as a linear combination of the vectors in B; that is we must show that the vector equation

$$
\begin{equation*}
\mathrm{c}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{c}_{2} \overrightarrow{\mathrm{x}}_{2}+\cdots+\mathrm{c}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\overrightarrow{\mathrm{b}} \tag{2}
\end{equation*}
$$

in the unknown variables $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{k}}$ always has at least one solution.

EXAMPLE (THEOREM) \#1. Show that $B=\left\{[1,0,0]^{T},[1,1,0]^{T}\right\}$ is a basis for $W=\left\{[x, y, 0]^{T}\right.$: $\mathrm{x}, \mathrm{y} \in \mathbf{R}\}$.
Solution. (proof) To show linear independence we solve

$$
\mathrm{c}_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\mathrm{c}_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \begin{array}{r}
\mathrm{c}_{1}+\mathrm{c}_{2}=0 \\
\mathrm{or}_{2}=0 \\
0
\end{array} \quad \text { to obtain } \mathrm{c}_{1}=\mathrm{c}_{2}=0
$$

so that B is linearly independent.
ii) To show B spans W we let $\vec{x}=[x, y, 0] \in W$ (i.e., an arbitrary vector in W) and solve

$$
\begin{aligned}
& c_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\mathrm{c}_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
0
\end{array}\right] \mathrm{c}_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\mathrm{c}_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
0
\end{array}\right] \begin{array}{r}
\mathrm{c}_{1}+\mathrm{c}_{2}=x \\
\mathrm{or}_{2}=\mathrm{y} \\
0=0
\end{array} \text { to obtain } \\
& c_{2}=y \Rightarrow c_{1}=x-c_{2}=x-y .
\end{aligned}
$$

Hence for any $\vec{x}=\left[\begin{array}{l}x \\ y \\ 0\end{array}\right] \in W$ we have $\vec{x}=\left[\begin{array}{l}x \\ y \\ 0\end{array}\right]=(x-y)\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+y\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] ;$
that is, every vector in W can be written as a linear combination of vectors in B .
Hence B spans W and Span B = W.
Since B is a linearly independent set and spans W , it is a basis for W .
Q.E.D.

EXAMPLE (THEOREM) \#2. $B=\left\{\hat{\mathrm{e}}_{1}, \ldots, \hat{\mathrm{e}}_{\mathrm{n}}\right\}$ where $\hat{\mathrm{e}}_{\mathrm{i}}=[0, \ldots, 0,1,0, \ldots, 0]^{\mathrm{T}}$ is a basis of $\mathbf{R}^{\mathrm{n} .}$.

THEOREM \#3. Let $\mathrm{B}=\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{k}\right\} \subseteq \mathrm{W} \subseteq \mathrm{V}$ where W is a subspace of the vector space V . Then B is a basis of W iff $\forall \vec{x} \in W, \exists!c_{1}, c_{2}, \ldots, c_{n}$ such that $\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\cdots+c_{k} \vec{x}_{k}$.

The values of $c_{1}, c_{2}, \ldots, c_{n}$ associated with each \vec{x} are called the coordinates of \vec{x} with respect to the basis $B=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right\}$. Given a basis, finding the coordinates of \vec{x} for any given vector is an important problem..

Although a basis set is not unique, if there is a finite basis, then the number of vectors in a basis set isunique.

THEOREM \#4. If $B=\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}$ is a basis for a subspace W in a vector space V, then every basis set for W has exactly k vectors.

DEFINITION \#2. The number of vectors in a basis set for a subspace W of a vector space V is the dimension of W . If the dimension of W is k , we write $\operatorname{dim} \mathbf{W}=\mathbf{k}$.

THEOREM \#5. The dimension of \mathbf{R}^{n} over \mathbf{R} (and the dimension of \mathbf{C}^{n} over \mathbf{C}) is n .
Proof idea. Exhibit a basis and prove that it is a basis. (See Example (Theorem) \#2)

EXERCISES on Basis Sets and Dimension

EXERCISE \#1. True or False.

\qquad 1. If $B=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{X}_{n}\right\} \subseteq V$ where is a vector space, then B is a basis of W if B is linearly independent and B spans W (i.e. Span $B=W$)
\qquad 2. To show that B is a spanning set using DUD we must show that an arbitrary vector $\vec{b} \in W$ can be written as a linear combination of the vectors in B
\qquad 3. To show that $\mathrm{B}=\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{n}}\right\} \subseteq \mathrm{V}$ where V is a vector space is a spanning set we must show that for an arbitrary vector $\overrightarrow{\mathrm{b}} \in \mathrm{W}$ the vector equation $\mathrm{c}_{1} \overrightarrow{\mathrm{X}}_{1}+\mathrm{c}_{2} \overrightarrow{\mathrm{X}}_{2}+\cdots+\mathrm{c}_{\mathrm{n}} \overrightarrow{\mathrm{x}}_{\mathrm{n}}=\overrightarrow{\mathrm{b}}$ in the unknown variables $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}$ always has at least one solution.
\qquad 4. If $B=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right\} \subseteq V$ where V is a vector space, then B is a basis of W iff $\forall \vec{x} \in W, \exists!c_{1}, c_{2}, \ldots, c_{n}$ such that $\vec{x}=c_{1} \vec{x}+c_{2} \vec{x}+\cdots+c_{n} \vec{x}$.
\qquad 5. $B=\left\{[1,0,0]^{\mathrm{T}},[1,1,0]^{\mathrm{T}}\right\}$ is a basis for $\mathrm{W}=\left\{[\mathrm{x}, \mathrm{y}, 0]^{\mathrm{T}}: \mathrm{x}, \mathrm{y} \in \mathbf{R}\right\}$.
\qquad 6. If $B=\left\{\vec{x}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{n}}\right\} \subseteq \mathrm{W} \subseteq \mathrm{V}$ where W is a subspace of the vector space V and B is a basis of W so that $\forall \vec{x} \in W, \exists!c_{1}, c_{2}, \ldots, c_{n}$ such that $\vec{x}=c_{1} \vec{x}+c_{2} \vec{x}+\cdots+c_{n} \vec{x}$, then the values of $c_{1}, c_{2}, \ldots, c_{n}$ associated with each \vec{x} are called the coordinates of \vec{x} with respect to the basis B .
\qquad 7. A basis set for a vector space is not unique.
\qquad 8. If $B=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right\}$ is a basis for a subspace W in a vector space V, then every basis set for W has exactly n vectors.
\qquad 9. The number of vectors in a basis set for a vector space V is called the dimension of V .
\qquad 10. If the dimension of V is n , we write $\operatorname{dim} \mathrm{V}=\mathrm{n}$.
\qquad 11. The dimension of \mathbf{R}^{n} over \mathbf{R}.
\qquad 12. The dimension of \mathbf{C}^{n} over \mathbf{C} is n .

EXERCISE \#2. Show that $B=\left\{[1,0,0]^{T},[2,1,0]^{T}\right\}$ is a basis for $W=\left\{[x, y, 0]^{T}: x, y \in \mathbf{R}\right\}$.
EXERCISE \#3. Show that $B=\left\{\hat{e}_{1}, \ldots, \hat{e}_{n}\right\}$ where $\hat{e}_{i}=[0, \ldots, 0,1,0, \ldots, 0]^{\mathrm{T}}$ is a basis of $\mathbf{R}^{\mathrm{n} .}$.
EXERCISE \#4. Show that the dimension of \mathbf{R}^{n} over \mathbf{R} is n.
EXERCISE \#5. Show that the dimension of \mathbf{C}^{n} over \mathbf{C} is n.

Ch. 5 Pg. 17

