Handout #4

Professor Moseley

<u>DEFINITION #1</u>. Let B = { \vec{x}_1 , \vec{x}_2 ,..., \vec{x}_k } \subseteq W \subseteq V where W is a subspace of the vector space V. Then B is a **basis** of W if

- i) B is linearly independent
- ii) B spans W (i.e. Span B = W)

To prove that a set B is a basis (or basis set or base) for W we must show both i) and ii). We already have a method to show that a set is **linearly independent**. To use DUD consider the vector equation

$$c_1 \vec{x}_1 + c_2 \vec{x}_2 + \dots + c_k \vec{x}_k = \vec{0}$$
(1)

in the unknown variables $c_1, c_2, ..., c_k$ and show that the trivial solution $c_1 = c_2 \cdots = c_k = 0$ is the only solution of (1). To show that B is a **spanning set** using DUD we must show that an arbitrary vector $\vec{b} \in W$ can be written as a linear combination of the vectors in B; that is we must show that the vector equation

$$c_1 \vec{x}_1 + c_2 \vec{x}_2 + \dots + c_k \vec{x}_k = \vec{b}$$
 (2)

in the unknown variables $c_1, c_2, ..., c_k$ always has at least one solution.

<u>EXAMPLE (THEOREM) #1.</u> Show that $B = \{ [1,0,0]^T, [1,1,0]^T \}$ is a basis for $W = \{ [x, y, 0]^T : x, y \in \mathbf{R} \}.$

Solution. (proof) To show linear independence we solve

$$c_{1}\begin{bmatrix}1\\0\\0\end{bmatrix} + c_{2}\begin{bmatrix}1\\1\\0\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix} \text{ or } c_{1} + c_{2} = 0 \\ or c_{2} = 0 \text{ to obtain } c_{1} = c_{2} = 0 \\ 0 = 0 \text{ ot obtain } c_{1} = c_{2} = 0$$

so that B is linearly independent.

ii) To show B spans W we let $\vec{x}=[x,\,y,\,0]\in W$ (i.e., an arbitrary vector in W) and solve

$$\mathbf{c_1} \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} + \mathbf{c_2} \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{0} \end{bmatrix} \quad \mathbf{c_1} \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} + \mathbf{c_2} \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{0} \end{bmatrix} \quad \mathbf{c_1} + \mathbf{c_2} = \mathbf{x}$$

or $\mathbf{c_2} = \mathbf{y}$ to obtain
 $\mathbf{c_2} = \mathbf{y} \Rightarrow \mathbf{c_1} = \mathbf{x} - \mathbf{c_2} = \mathbf{x} - \mathbf{y}.$

Ch. 5 Pg. 14

Hence for any $\vec{x} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \in W$ we have $\vec{x} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = (x - y) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$;

that is, every vector in W can be written as a linear combination of vectors in B. Hence B spans W and Span B = W.

Since B is a linearly independent set and spans W, it is a basis for W.

Q.E.D.

 $\underline{\text{EXAMPLE (THEOREM) #2.}}_{\substack{\text{de}_{1}, \dots, \hat{e}_{n}} \text{where } \hat{e}_{i} = \begin{bmatrix} 0, \dots, 0, 1, 0, \dots, 0 \end{bmatrix}^{T}_{\substack{\text{destroyed} \\ \text{destroyed}}} \text{ is a basis of } \mathbf{R}^{n} \text{ .}$

<u>THEOREM #3</u>. Let $B = \{ \bar{x}_1, \bar{x}_2, ..., \bar{x}_k \} \subseteq W \subseteq V$ where W is a subspace of the vector space V. Then B is a basis of W iff $\forall \bar{x} \in W, \exists ! c_1, c_2, ..., c_n$ such that $\bar{x} = c_1 \bar{x}_1 + c_2 \bar{x}_2 + \dots + c_k \bar{x}_k$.

The values of $c_1, c_2, ..., c_n$ associated with each \vec{x} are called the coordinates of \vec{x} with respect to the basis $B = \{ \vec{x}_1, \vec{x}_2, ..., \vec{x}_n \}$. Given a basis, finding the coordinates of \vec{x} for any given vector is an important problem.

Although a basis set is not unique, if there is a finite basis, then the number of vectors in a basis set isunique.

<u>THEOREM #4</u>. If $B = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_k\}$ is a basis for a subspace W in a vector space V, then every basis set for W has exactly k vectors.

<u>DEFINITION #2</u>. The number of vectors in a basis set for a subspace W of a vector space V is the **dimension** of W. If the dimension of W is k, we write **dim** $\mathbf{W} = \mathbf{k}$.

<u>THEOREM #5</u>. The dimension of \mathbf{R}^n over \mathbf{R} (and the dimension of \mathbf{C}^n over \mathbf{C}) is n.

Proof idea. Exhibit a basis and prove that it is a basis. (See Example (Theorem) #2)

EXERCISES on Basis Sets and Dimension

EXERCISE #1. True or False.

- 1. If B = { x
 ₁, x
 ₂,..., x
 _n } ⊆ V where is a vector space, then B is a basis of W if B is linearly independent and B spans W (i.e. Span B = W)
 2. To show that B is a spanning set using DUD we must show that an arbitrary vector
 - $\vec{b} \in W$ can be written as a linear combination of the vectors in B
- _____ 3. To show that $B = \{ \vec{x}_1, \vec{x}_2, ..., \vec{x}_n \} \subseteq V$ where V is a vector space is a spanning set we
 - must show that for an arbitrary vector $\vec{b} \in W$ the vector equation
 - $c_1 \vec{x}_1 + c_2 \vec{x}_2 + \dots + c_n \vec{x}_n = \vec{b}$ in the unknown variables c_1, c_2, \dots, c_n always has at least one solution.
 - 4. If $B = \{ \vec{x}_1, \vec{x}_2, ..., \vec{x}_n \} \subseteq V$ where V is a vector space, then B is a basis of W iff $\forall \vec{x} \in W, \exists ! c_1, c_2, ..., c_n$ such that $\vec{x} = c_1 \vec{x} + c_2 \vec{x} + \dots + c_n \vec{x}$.
- _____ 5. B = { $[1,0,0]^{T}$, $[1,1,0]^{T}$ } is a basis for W = { $[x, y, 0]^{T}$: $x, y \in \mathbf{R}$ }.
- 6. If $B = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_n\} \subseteq W \subseteq V$ where W is a subspace of the vector space V and B is a basis of W so that $\forall \vec{x} \in W, \exists ! c_1, c_2, ..., c_n$ such that $\vec{x} = c_1 \vec{x} + c_2 \vec{x} + \dots + c_n \vec{x}$, then the values of $c_1, c_2, ..., c_n$ associated with each \vec{x} are called the coordinates of \vec{x} with respect to the basis B.
- _____7. A basis set for a vector space is not unique.
- 8. If $B = \{ \vec{x}_1, \vec{x}_2, ..., \vec{x}_n \}$ is a basis for a subspace W in a vector space V, then every basis set for W has exactly n vectors.
 - 9. The number of vectors in a basis set for a vector space V is called the dimension of V.
- 10. If the dimension of V is n, we write dim V = n.

_____ 11. The dimension of \mathbf{R}^n over \mathbf{R} .

12. The dimension of \mathbf{C}^n over \mathbf{C} is n.

<u>EXERCISE #2</u>. Show that $B = \{ [1,0,0]^T, [2,1,0]^T \}$ is a basis for $W = \{ [x, y, 0]^T : x, y \in \mathbf{R} \}$.

<u>EXERCISE #3</u>. Show that $B = \{\hat{e}_1, ..., \hat{e}_n\}$ where $\hat{e}_i = [0, ..., 0, 1, 0, ..., 0]^T$ is a basis of \mathbf{R}^{n} .

EXERCISE #4. Show that the dimension of \mathbf{R}^n over \mathbf{R} is n.

EXERCISE #5. Show that the dimension of \mathbf{C}^n over \mathbf{C} is n.

Ch. 5 Pg. 16