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Handout #1 LINEAR OPERATOR THEORY Professor Moseley

In this handout, we preview linear operator theory.  The most important examples of
linear operators are differential and integral operators and operators defined by matrix
multiplication.  These arise in many applications.  Lumped parameter systems (e.g., linear
circuits and mass spring systems) give rise to discrete operators defined on finite dimensional
vector spaces (e.g., Rn).  Differential and integral equations (e.g., Maxwell’s equations and the
Navier-Stokes equation) are used to model distributed (continuum) systems and require infinite
dimensional vector spaces.  These give rise to differential and integral operators on function
spaces.

Even without covering any topics in differential equations, your background in calculus 
should be sufficient to see how discrete and continuous operators are connected as linear
operators on a vector space.  

A function or map T from one vector space  V  to another vector space W is often call an
operator.  If we wish to think geometrically (e.g., if V and W are  R2 or R3) rather than
algebraically we might call T a transformation.

DEFINITION 1.  Let V and W be vector spaces over the same field K.  An operator T:V  W is
said to be linear  if   ,  V  and scalars  α,βK,  it is true that

x y

                T( α  + β  ) = α T( )  + β T( ). (1)
x y x y

THEOREM 1.    Let V and W be vector spaces over the same field K.  An operator T: V  W   is
linear if and only if the following two properties hold:
    i)  ,  ε V   implies   T( +  )  =  T( ) + T( ) (2)

x y x y x y
   ii)  αK  and   ε V implies  T(α )  =  α T( ). (3)

x x x

EXAMPLE 1  Let the operator  T:Rn  Rm be defined by matrix multiplication of the column 
vector  by the m× n  matrix  A; that is, let

x

         T( ) =df   (4)
x

mxn nx1
A x

where  Rn   and     Rm×n.  Then T is a linear

1

2

mxn

n

x
x

x

x

 
 
 
 

   
 
 
  



11 12 1n

21 22 2n

mxn

m1 m21 mn

a a a
a a a

a a a

A

   
    
   

     
   
 

    
operator.
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EXAMPLE 2  Let I = (a,b).  The operator  D:C1(I,R)  C(I,R) defined by

          D(f) =df  (5)
df
dx

where  f ε C1(I,R) = {f:I  R:   exists and is continuous on I} and
df
dx

C(I, R) ={f:I  R:f is continuous on I}.  Then D is a linear operator.  We may restrict D to 
A (I, R) ={f:I  R:f is analytic on I} so that D:A (I, R) A (I, R) maps a vector space back to
itself.

DEFINITION #2.  Let T:VW be a mapping from a set V to a set W.  The set 
R(T) = {y W: there exists an xV such that y = T(x) } is called the range of T.  If W has an 
additive structure (i.e., a binary operation which we call addition) with an additive identity which 
we call 0, then the set N(T) = {xV: T(x) = 0} is called the null set of T (or nullity of T).

If T is a linear operator from a vector space V to another vector space W, we can say more.

THEOREM #2  Let T:VW be a linear operator from a vector space V to a vector space W.  The 
range of T,  R(T) = {  W: there exists an V such that   = T( ) }, is a subspace of W

y x y x
and the null set of T, N(T) = { V: T( ) = 0} is a subspace of V.

x x

We rename these sets.

DEFINITION #3.  Let T:VW be a linear operator from a vector space V to another vector
space  W.  The set R(T) = {  W: there exists an  V such that   = T( ) } is called the

y x y x
range space of T and the set N(T) = { V: T( ) = } is called the null space of T. .

x x

0
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EXERCISES on Linear Operator Theory

EXERCISE #1.  True or False.
_____ 1. A linear circuit is an example of a lumped parameter system.

_____ 2. Amass/spring system is an example of a lumped parameter system. 

_____ 3. A function or map T from one vector space  V  to another vector space W is often call 
              an operator. 
_____ 4. An operator T:V  W is said to be linear  if   ,  V  and scalars  α,βK,  it is true 

x y
                that T( α  + β  ) = α T( )  + β T( ).

x y x y
_____ 5. An operator T: V  W   is linear if and only if the following two properties hold:
               i)  ,  ε V   implies   T( +  )  =  T( ) + T( ) and ii)  αK  and   ε V implies 

x y x y x y x

              T(α )  =  α T( ).
x x

_____ 6. The operator  T:Rn  Rm defined by  is a linear operator.
mxn nx1

T(x) A x
 

 _____ 7. The operator  D:C1(a,b)  C(a,b) be defined by  D(f) =df   is a linear operator.
df
dx

_____ 8. C(a,b) ={f:(ab)  R:f is continuous}.

_____ 9.  C1(a,b) = {f:(a,b)  R:   exists and is continuous}. 
df
dx

_____ 10. If T:VW , then the set R(T) = {y W: there exists an xV such that y = T(x) } is 
                 called the range of T.  
_____ 11. If T:VW and W has an additive structure (i.e., a binary operation which we call 
                addition) with an additive identity which we call 0, then the set N(T) = 
               {xV: T(x) = 0} is called the null set of T (or nullity of T).
_____ 12. If T:VW is a linear operator from a vector space V to a vector space W, then the 
                 range of T,  R(T) = {  W: there exists an V such that   = T( ) }, is a 

y x y x
                 subspace of W
_____ 14.If T:VW is a linear operator from a vector space V to a vector space W, then the null 
                 set of T, N(T) = { V: T( ) = 0} is a subspace of V.

x x
_____ 15. If T:VW is a linear operator from a vector space V to another vector space  W, then
                  the set R(T) = {  W: there exists an  V such that   = T( ) } is called the 

y x y x
                   range space of T. 
_____ 16. If T:VW is a linear operator from a vector space V to another vector space  W, then
                  the set N(T) = { V: T( ) = } is called the null space of T.

x x

0
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Handout # 2 SPANNING SETS Professor Moseley

DEFINITION #1.  If   , ,    ,  are vectors in a vector space  V  and α1,α2,,αn  
x1

x2
x n

are scalars, then

     α,    + α2    +    + αn  =   
x1

x2
x n

n

i 1
i 1

 x


 

is called a linear combination of the vectors.  (It is important to note that a linear combination
allows only a finite number of vectors.)

EXAMPLE #1.  Consider the system of linear algebraic equations:

2x + y + z  =  1
4x + y      = -3
 x - 2y - z =  0     .   

This set of scalar equations can be written as the vector equation

       x    +      y      +     z      =   
2
4
1

 
 
 
  

1
1
2

















1
0
1

















1
3

0

















where the left hand side (LHS) is a linear combination of the (column vectors whose 
components come from the) columns of the coefficient matrix

A   =   .

2 1 1
4 1 0
1 2 1 

















If we generalize Example #1, we obtain:

THEOREM #1.  The general system  

(1)A x b
nxn nx1 nx1

 


has a solution if and only if the vector can be written as a linear combination of  the

b
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columns of  A.  That is,  is in the range space of T( ) = A  if and only if  can be written as

b x x


b

a linear combination of  the (column vectors whose components come from the) columns of  the
coefficient matrix. A.

DEFINITION #2.  Let  S  be a (finite) subset of a subspace  W  of a vector space  V.  If every
vector in  W  can be written as a linear combination of (a finite number of) vectors in  S, then  S 
is said to span W or to form a spanning set for  W.  On the other hand, if  S  is any (finite) set of
vectors, the span of S, written Span(S), is the set of all possible linear combinations of (a finite
number of) vectors in  S.

THEOREM #2.  For any (finite) subset  S  of a vector space  V, Span (S) is a subspace of V. 

THEOREM #3.  If (a finite set)  S  is a spanning set for  W, then Span S = W.

EXAMPLES.  Consider the following subsets of R3.

      1. S = {[1,0,0]T} = {î}.  Then  Span (S) = {x î: x  R} = x - axis.
      2. S = {[1,0,0]T, [0,1,0]T} = {î, j}.  Then Span (S) = {x î+y ĵ: x, y  R} = the xy plane.
      3. S = {[1,0,0]T, [1,1,0]T} = {î, î+ĵ}.  Then Span (S) = xy plane.
      4. S = {[1,0,0]T, [0,1,0]T, [1,1,0]T} = {î, ĵ, î+ĵ}.  Then Span (S) = xy plane.

DEFINITION #3.  For any matrix  , the span of the set of column vectors is the columnA
mxn

space of  A.  The usual notation for the column space is  R(A)  and sometimes RA.  Normally we
will use  R(A).  The reason for this notation is that when we think of the operator T( )  defined

x
by (matrix)  multiplication of the matrix  by the column vector   = [x1,,xn]T, we see that T A

mxn

x

maps vectors    Rn  into vectors    = A    Rm, the column space R(A)  is seen to be the
x y

x
range (space) of T.

COMMENT.  Consider the general system (1) above.  Theorem #1 can now be rephrased to say 
that (1) has a solution if and only if   is in the column space of  A (i.e. in the range of the 


b

operator T).

DEFINITION 4.    For any matrix  , the span of the set of row vectors is the row space A
mxn

of  A.  The usual notation for the row space is  R(AT)  and sometimes RAT since the row space of 
A is the column space of AT.  Normally we will use  R(AT).  

If we think of the operator TT( )  defined by (matrix)  multiplication of the matrix   by the 
x A

mxn

T

column vector = [y1,,ym]T, we see that AT  maps vectors Rm  into vectors = AT   Rn, 
y y x y
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the row space R(AT)  is seen to be the range (space) of AT.

Recall that all of the coefficient matrices for the associated linear systems of algebraic equations 
obtained in the process of doing Gauss elimination are row equivalent.  Hence they all have the 
same row space.  However, they do not have the same column space.

EXERCISES on Spanning Sets

EXERCISE #1.  True or False.
_____ 1. If   , ,    ,  are vectors in a vector space  V  and α1,α2,,αn  are scalars, then  

x1
x2

x n

                α,    + α2    +    + αn  =   is a linear combination of the vectors
x1

x2
x n

n

i 1
i 1

 x


 

_____ 2. A linear combination allows only a finite number of vectors.

_____ 3. The linear algebraic equations: 2x + y + z  =  1, 4x + y   = 3, x  2y  z =  0,  is a 
                system of scalar equations.
_____ 4. The coefficient matrix for the system of linear algebraic equations: 2x + y + z  =  1,

               4x + y   = 3, x  2y  z =  0 is A   = .  

2 1 1
4 1 0
1 2 1 

















 _____ 5. The linear algebraic equations: 2x + y + z  =  1, 4x + y   = 3, x  2y  z =  0 can be

              written as the vector equation   x    +      y      +     z      =   .
2
4
1

 
 
 
  

1
1
2

















1
0
1

















1
3

0

















_____ 5. The left hand side (LHS) of the vector equation   x    +      y      +     z   
2
4
1

 
 
 
  

1
1
2

















1
0
1

















               =    is a linear combination of the column vectors whose components come from 
1
3

0

















               the columns of the coefficient matrix A   =   .

2 1 1
4 1 0
1 2 1 

















_____ 6. The general system   has a solution if and only if the vector can be writtenA x b
nxn nx1 nx1

 



b
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as a linear combination of  the columns of  A.  
_____ 7.  is in the range space of T( ) = A  if and only if  can be written as a linear 


b x x


b

              combination of  the column vectors whose components come from the columns of  the 
              coefficient matrix A.
_____ 8. If  S  be a finite subset of a subspace  W  of a vector space  V and  every vector in  W
               can be written as a linear combination of a finite number of vectors in  S, then  S  is said
               to span W or to form a spanning set for  W.
_____ 9.  If  S  be a finite subset of a subspace  W  of a vector space  V, then the span of S,
                  written Span(S), is the set of all possible linear combinations of a finite number of 
                  vectors in  S.
_____ 10.  For any finite subset  S  of a vector space  V, Span (S) is a subspace of V. 

_____ 11.  If  S  be a finite subset of a subspace  W  of a vector space  V and  S  is a spanning set 
                  for  W, then Span S = W.
_____ 12. For any matrix  , the span of the set of column vectors is the column space of  A.A

mxn

_____ 13.  The usual notation for the column space is  R(A)  and sometimes RA. 

_____ 14.  The reason that R(A) is the column space of A is that when we think of the operator 

                 T( )  defined by matrix  multiplication of the matrix  by the column vector  
x A

mxn

                 = [x1,,xn]T, we see that T  maps vectors    Rn  into vectors    = A    Rm 
x x y

x
                 which is the column space R(A)
_____ 14. The column space R(A) is the range space of T.

_____ 15.  has a solution if and only if  is in the  range of the operator T( ) = A .A x b
nxn nx1 nx1

 



b

x x

_____ 16.  has a solution if and only if   is in the column space of  A. A x b
nxn nx1 nx1

 



b

_____ 17.  For any matrix  , the span of the set of row vectors is the row space of  A. A
mxn

_____ 18.  The usual notation for the row space is  R(AT)  and sometimes RAT since the row
                  space of A is the column space of AT.    
_____ 19.  If we think of the operator TT( )  defined by (matrix)  multiplication of the matrix 

x
                 by the column vector = [y1,,ym]T, we see that AT  maps vectors Rm  into A

mxn

T y y

                vectors = AT   Rn, the row space R(AT)  is seen to be the range space of AT.
x y
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Handout #3 LINEAR INDEPENDENCE (OF COLUMN VECTORS) Professor Moseley

DEFINITION #1.  Let V be a vector space.  A finite set of vectors   V isS {x ,..., x }1 k
 

linearly independent (.i.) if the only set of scalars c1, c2, ..., ck which satisfy the (homogeneous)
vector equation

                              (1)1 1 2 2 k kc x c x c x 0     
  

is   c1 = c2 =  = cn = 0; that is, (1) has only the trivial solution.  If there is a set of scalars not all
zero satisfying (1) then S is linearly dependent (.d.).

It is common practice to describe the vectors (rather than the set of vectors) as being
linearly independent or linearly dependent.  Although this is technically incorrect, it is wide
spread, and hence we accept this terminology.  Since we may consider (1) as a linear
homogeneous equation with unknown vector [ c1, c2, ..., cn]  Rn, if (1) has one nontrivial
solution, then it in fact has an infinite number of nontrivial solutions.  As part of the standard
procedure for showing that a set is linearly dependent directly using the definition (DUD) you
must exhibit one (and only one) such non trivial solution.  To show that a set is linearly
independent directly using the definition (DUD) you must show that the only solution of (1) is
the trivial solution (i.e. that all the ci's must be zero).  Before looking at the application of this
definition to column vectors, we state four theorems.

THEOREM #1.  Let V be a vector space.  If a finite set of vectors   V containsS {x ,..., x }1 k
 

the zero vector, then S is linearly dependent.

THEOREM #2.  Let V be a vector space.  If , then  V is linearly independent.
 
x 0 S {x}



Proof.  To show  S  is linearly independent we must show that c1  implies that  c1 = 0.  But
 
x = 0

by the zero product theorem,  if c1  is true then  c1 = 0 or .  But by hypothesis  . 
 
x = 0  

x = 0  
x 0

Hence c1  implies  c1  = 0.  Hence S =  where  is linearly independent.
 
x = 0 {x} x 0



Q.E.D.

THEOREM #3.  Let V be a vector space and  S = { , } V.  If either  or  is the zerox
y x

y
vector, then S is linearly dependent.

THEOREM #4.  Let V be a vector space and  S = { , } V where and  are nonzerox
y x

y
vectors.  Then S is linearly dependent if and only if one vector is a scalar multiple of the other. 

Although the definition is stated for an abstract vector space and hence applies to any

Ch. 5 Pg. 9



vector space and we have stated some theorems in this abstract setting, in this section we focus on
column vectors in Rn (or Cn or Kn).  Since we now know how to solve a system of linear
algebraic equations, using this procedure, we can develop a “procedure” to show that a finite set
in Rn (or Cn or Kn) is linearly independent.  We also show how to give sufficient conditions to
show that a finite set in Rn (or Cn or Kn) is linearly dependent.

PROCEDURE.  To determine if a set   V is linearly independent or linearlyS {x ,..., x }1 k
 

dependent, we first write down the equation (1) and try to solve.  If we can show that the only
solution is the trivial solution c1 = c2 =  = cn = 0, then we have shown directly using the
definition (DUD) of linear independence that S is linearly independent.  On the other hand
(OTOH), if we can exhibit a nontrivial solution, then we have shown directly using the
definition of linear dependence that S is linearly dependent.  We might recall that the linear
theory assures us that if there is one nontrivial solution, that there are an infinite number of
nontrivial solutions.   However, to show that S is linearly dependent directly using the definition,
it is not necessary (or desirable) to find all of the nontrivial solutions.  Although you could argue
that once you are convinced (using some theorem) that there are an infinite number of solutions,
then we do not need to exhibit one, this will not be considered to be a proof directly using the
definition (as it requires a theorem).  Thus to prove that S is linearly dependent directly using the
definition of linear dependence, you must exhibit one nontrivial solution.  This will help you to
better understand the concepts of linear independence and linear dependence.  We apply these
“procedures” to finite sets in Rn (or Cn).  For Rn (or Cn) (1) becomes a system ofS {x ,..., x }1 k

 

n equations (since we are in Rn (or Cn) ) in k unknowns (since we have k vectors).  (This can be
confusing when applying general theorems about m equations in n unknowns.  However, this
should not be a problem when using DUD on specific problems.)

EXAMPLE #1.  Determine (using DUD) if   is linearly independent.
1 2 1

S , ,
1 3 2

      
       

      

Solution.  (This is not a yes-no question and a proof is required).  Assume

                                            (2)1 2 3

1 2 1 0
c c c

1 3 2 0
       

         
       

and (try to) solve.  The vector equation (2) is equivalent to the two scalar equations (since we are
in R2) in three unknowns (since S has three vectors).

c1+ 2c2 + c3 = 0
                          c1+ 3c2 + 2c3 = 0                                                                                       
(3)

Simple systems can often be solved using ad hoc (for this case only) procedures.  But for
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complicated systems we might wish to write this system in the form   and use GaussAc 0


elimination (on a computer).  Note that when we reduce A we do not have to augment.  Why?

For this example    and .  Since the system is homogeneous we can
1 2 1

A
1 3 2
 

  
 

1

2

3

c
c c

c

 
   
  



solve by reducing  A  without augmenting (Why?). 

1 2 3 1 2 3 3 3 3

2 3 2 31 2

c 2c c 0 c 2c c 2c c c1 2 1 1 2 1
c c 0 c cR R 1 3 2 0 1 1
           

             

Hence the general solution of (2) is  .
1 3

2 3 3

3 3

c c 1
c c c 1
c c 1

     
             
          

Hence there are an infinite number of solutions.  They are the vectors in the subspace 
W = {  R3 :  = c [2, -1, 1]T with c  R}.  Since there is a nontrivial solution, S  is linearly 

x x
dependent.  However, we must exhibit one nontrivial solution which we do by choosing 
c1=1, c2 = 1, and c3 = 1.  Hence we have 

 (4)
1 2 1 0

(1) ( 1) (1)
1 3 2 0
       

          
       

Since we have exhibited a nontrivial linear combination of the vectors in S, (4) alone proves that 
S  is a linearly dependent set in the vector space R2   QED

It may be easy to guess a nontrivial solution (if one exists).  We call this method the
Clever Ad Hoc (CAH) method.  You may have noted that the first and third vectors in the
previous example add together to give the second vector.  Hence the coefficients c1, c2, and c3
could have been easily guessed.

EXAMPLE #2.  Determine if   is linearly independent.

1 3 4
S 2 , 6 , 5

1 3 6

      
             
             

Solution.  (Again this is not a yes-no question and a proof is required)  Note that since 
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   we have 
1 3

3 2 6
1 3

   
   
   
   
   
   


 

. (5)
1 3 4 0

(3) 2 ( 1) 6 (0) 5 0
1 3 6 0

       
                 
               

Since we have exhibited a nontrivial linear combination of the vectors in S, (5) alone proves that 
S  is a linearly dependent set in the vector space R3 Hence  S  is linearly dependent.  Q.E.D.

We give a final example.

EXAMPLE #3.  Determine if    is linearly independent.
1 1

S ,
1 2

    
     

    

Solution.  Since  is not a multiple of  we assume 1
1
 
 
 
 

1
2
 
 
 
 

1 2
1 2

1 2

c c 01 1 0c c Ac 01 2 0 c 2c 0
     
     
          

 
    

 


where 

      and .  Hence
1 1

A
1 2
 

  
 

1

2

c
c

c
 

  
 



1 2 1 2 2

1 2 2

c c 01 1 1 1 c c c 0
R R c 01 2 0 1

       
         

Since we have proved that the trivial linear combination where c1 = c2 = 0 is the only linear
combination of the vectors in S that gives the zero vector in  R2 (i.e., we have proved that S  is a
linearly independent set.
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EXERCISES on Linear Independence (of Column Vectors)

EXERCISE #1.  True or False.
_____ 1. If V be a vector space and   V, then S is linearly independent (.i.) if S {x ,..., x }1 k

 

             the only set of scalars c1, c2, ..., ck which satisfy the (homogeneous) vector equation          
             is   c1 = c2 =  = cn = 0.1 1 2 2 k kc x c x c x 0     

  

_____ 2. If V be a vector space and   V, then S is linearly independent (.i.) if S {x ,..., x }1 k
 

             the only set of scalars c1, c2, ..., ck which satisfy the (homogeneous) vector equation          
             is the trivial solution.1 1 2 2 k kc x c x c x 0     

  

_____ 3.  If V be a vector space and   V, then S is linearly dependent (.d.) ifS {x ,..., x }1 k
 

              there is a set of scalars not all zero satisfying  .1 1 2 2 k kc x c x c x 0     
  

_____ 4. If V is a vector space and   V contains the zero vector, then S isS {x ,..., x }1 k
 

               linearly dependent.
_____ 5. If V be a vector space, and  V, then S is linearly independent.

 
x 0 S {x}



_____ 6.  If  c1  is true then by the zero product theorem either c1 = 0 or . _____ 
 
x = 0  

x = 0

_____ 7. If V is a vector space and  S = { , } V and  either  or  is the zero vector, then S x
y x

y
              is linearly dependent.
_____ 8. If V is a vector space and  S = { , } V where and  are nonzero vectors, then S isx

y x
y

              linearly dependent if and only if one vector is a scalar multiple of the other. 

EXERCISE #2.  Use the procedure given above to determine (using DUD) if is1 4 2S , ,1 3 2
       
      
            



linearly dependent or linearly independent or neither.  Thus you must explain completely.

EXERCISE #3.  Use the procedure given above to determine (using DUD) if  is
1 4 4

S 2 , 8 , 5
1 4 6

      
             
             

linearly dependent or linearly independent or neither.  Thus you must explain completely.

EXERCISE #4.  Use the procedure given above to determine (using DUD) if  
1 1

S ,
1 2

    
     

    
is linearly dependent or linearly independent or neither.  Thus you must explain completely.

EXERCISE #5. Prove Theorem #1.

EXERCISE #6. Prove Theorem #3.

EXERCISE #7. Prove Theorem #4.
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