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Handout #1 SYSTEMS, SOLUTIONS, AND Prof. Moseley
ELEMENTARY EQUATION OPERATIONS

In high school you learned how to solve two linear (and possibly nonlinear) equations in
two unknowns by the elementary algebraic techniques of addition and substitution to eliminate
one of the variables.  These techniques may have been extended to three and four variables.  Also,
graphical or geometric techniques may have been developed using the intersection of two lines
or three planes.  Later, you may have been introduced to a more formal approach to solving a
system of m equations in n unknown variables.

a 11  x 1  +  a 12  x 2 +    + a 1n  x n = b 1
a 21  x 1  +  a 22  x 2 +    + a 2n  x n = b 2
                             (1)
                            
                            
a m1  x 1  +  a m2  x 2 +    + a mn  x n = b m

We assume all of the scalars aij, xi, and bj are elements in a field K.  (Recall that a field is an
abstract algebra structure that may be defined informally as a number system where you can add,
subtract, multiply , and divide.  Examples of a field are  Q, R, and C.  However, N and Z are not
fields.  Unless otherwise noted, the scalars can be assumed to be real or complex numbers.  i.e., K
= R or K = C.)  The formal process for solving m linear algebraic equations in  n  unknowns
is called Gauss Elimination.  We need a formal process to prove that a solution (or a parametric
expression for an infinite number of solutions) can always be obtained in a finite number of steps
(or a proof that no solution exists), thus avoiding the pitfall of a "circular loop" which may result
from ad hoc approaches taken to avoid fractions.  Computer programs using variations of this
algorithm avoid laborious arithmetic and handle problems where the number of variables is large. 
Different programs may take advantage of particular characteristics of a category of linear
algebraic equations (e.g., banded equations).  Software is also available for iterative techniques
which are not discussed here.  Another technique which is theoretically interesting, but only useful
computationally for very small systems is Cramer Rule which is discussed in Chapter 7.  

DEFINITION #1.  A solution to (1) is an n-tuple (finite sequence)  x 1, x 2, ..., x n in Kn 
(e.g., Rn or Cn ) such that all of the equations in (1) are true.  It can be considered to be a row
vector [ x 1, x 2, ..., x n ] or as a column vector [ x 1, x 2, ..., x n ]T using the transpose notation. 
When we later formulate the problem given by the scalar equatiuons (1) as a matrix or “vector”
equation, we will need our unknown “vector” to be a column vector, hence we use column
vectors.   If we use column vectors, the solution set for (1) is the set 

S = {  = [ x 1, x 2, ..., x n ]  Kn: when x 1, x 2, ..., x n  are substituted into (1), all of the x
equations in (1) are satisfied}.
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DEFINITION #2.  Two systems of linear algebraic equations are equivalent if their solution sets
are equal (i.e., have the same elements).

As with a single algebraic equation, there are algebraic operations that can be performed on a
system that yield a new equivalent system.  We also refer to these as equivalent equation
operations (EEO’s).  However, we will restrict the EEO’s we use to three elementary equation
operations.  

DEFINITION #3.  The Elementary Equation Operations (EEO’s) are 
1. Exchange two equations
2. Multiply an equation by a nonzero constant.
3. Replace an equation by itself plus a scalar multiple of another equation.

The hope of elimination using EEO’s is to obtain, if possible, an equivalent system of n
equations that is one-way coupled with new coefficients aij as follows:

a11x1 + a12x2 +      + a1nxn = b1
            a22x2 +      + a2nxn = b2 (2)
             
             
            

            annxn = bn 

where aii  0 for i = 1, 2, ...,n.  Since these equations are only one-way coupled, the last equation
may then be solved for xn and substituted back into the previous equation to find xn -1.  This
process may be continued to find all of the xi’s that make up the unique (vector) solution.  Note
that this requires that  m  n so that there are at least as many equations as unknowns (some
equations may be redundant) and that all of the diagonal coefficients aii are not zero.  This is a
very important special case.  The nonzero coefficients aii are called pivots.

Although other operations on the system of equations can be derived, the three EEO’s in
Definition #3 are sufficient to find a one-way coupled equivalent system, if one exists.  If
sufficient care is not taken when using other operations such as replacing an equation by a linear
combination of the equations, a new system which is not equivalent to the old one may result.
Also, if we restrict ourselves to these three EEO’s, it is easier to develop computational
algorithms that can be easily programed on a computer.  Note that applying one of these EEO’s
to a system of equations (the Original System or OS) results in a new system of equations (New
System or NS).  Our claim is that the systems OS and NS have the same solution set.

THEOREM #1.  The new system (NS) of equations obtained by applying an elementary equation
operation to a system (OS) of equations is equivalent to the original system (OS) of equations.  

Proof idea.  By Definition#2 we need to show that the two systems have the same solution set.
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EEO # 1   Whether a given =[x1, x2, ..., xn] is a solution of a given scalar equation is “clearly”
x

not dependent on the order in which the equations are written down.  Hence whether a given
=[x1, x2, ..., xn] is a solution of all equations in a system of equations is not dependent on the

x
order in which the equations are written down

EEO # 2  If  =[x1, x2, ..., xn] satisfies.  
x

ai1x1 + kai2x2 +      + ainxn = bi (3)

then by the theorems of high school algebra, for any scalar k it also satisfies 

kai1x1 + kai2x2 +     + kainxn = kbi. (4)

The converse can be shown if  k0 since k will have a multiplicative inverse.

EEO # 3.  If  = [x1, ..., xn]T satisfies each of the original equations, then it satisfies
x

ai1x1 +     + ainxn + k(aj1x1 +     + ajnxn) = bi + kbj. (5)

Conversely, if (5) is satisfied and 

aj1x1 +     + ajnxn = bj (6)

is satisfied then (5) - k (6) is also satisfied.  But this is just (3).
QED

THEOREM #2.  Every EEO has in inverse EEO of the same type.

Proof idea.  EEO # 1.  The inverse operation is to switch the equations back.  
EEO # 2.  The inverse operation is to divide the equation by k(0); that is, to multiply the
equation by 1/k.
EEO # 3.  The inverse operation is to replace the equation by itself minus k (or plus k) times the
previously added equation (instead of plus k times the equation).

QED

EXERCISES on Systems, Solutions, and Elementary Equation Operations

EXERCISE #1.  True or False.
_____ 1. The formal process for solving m linear algebraic equations in  n  unknowns is called 
               Gauss Elimination
_____ 2. Another technique for solving n linear algebraic equations in  n  unknowns is Cramer
                Rule 
_____ 3. A solution to a system of m linear algebraic equations in  n  unknowns  is an n-tuple
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              (finite sequence)  x 1, x 2, ..., x n in Kn (e.g., Rn or Cn ) such that all of the equations are 
             true. 
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Handout #2 INTRODUCTION TO GAUSS ELIMINATION Professor Moseley

Gauss elimination can be used to solve a system of m linear algebraic equations over a
field K in n unknown variables x 1, x 2, ..., x n in a finite number of steps.

a 11  x 1  +  a 12  x 2 +    + a 1n  x n = b 1
a 21  x 1  +  a 22  x 2 +    + a 2n  x n = b 2
                             (1)
                            
                            
a m1  x 1  +  a m2  x 2 +    + a mn  x n = b m

Recall

DEFINITION #1.  A solution of to (1) is an n-tuple  x 1, x 2, ..., x n which may be considered as a 
(row) vector [ x 1, x 2, ..., x n ] (or column vector) in Kn  (usually K is R or C ) such that all of the
equations in (1) are true.  The solution set for (1) is the set S = { [ x 1, x 2, ..., x n ] Kn: all of the
equations in (1) are satisfied}.  That is, the solution set is the set of all solutions.  The  set is the
set where we look for solutions.  In this case it is Kn.  Two systems of linear algebraic equations
are equivalent if their solution set are the same (i.e., have the same elements).

Recall also the three elementary equation operations (EEO’s) that can be used on a set of linear
equations which do not change the solution set.
1. Exchange two equations
2. Multiply an equation by a nonzero constant.
3. Replace an equations by itself plus a scalar multiple of another equation.

Although other operations on the system of equations can be derived, if we restrict
ourselves to these operations, it is easier to develop computational algorithms that can be easily
programed on a computer.

DEFINITION #2.  The coefficient matrix is the array of coefficients for the system (not
including the right hand side, RHS).

(2)

11 12 1n

21 22 2n

m1 m21 mn

a a a
a a a

a a a
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DEFINITION #3.  The augmented (coefficient) matrix is the coefficient matrix augmented by
the values from the right hand side (RHS).

   x1    x2              xn
+ ,
*a 11    a 12        a 1n *   b1 * Represents the first equation 
*a 21    a 22        a 2n *   b2 * Represents the second equation
*                         *     * (3)
*                         *     *
*                         *     *
*a m1    a m2        a mn *    bm * Represents the mth equation
. -

Given the coefficient matrix A and the right hand side (“vector”) , we denote the associated 

b

augmented matrix as [A ].  (Note the slight abuse of notation since A actually includes the

b

brackets.  This should not cause confusion.)

ELEMENTARY ROW OPERATIONS.  All of the information contained in the equations of a
linear algebraic system is contained in the augmented matrix.  Rather than operate on the original
equations using the elementary equation operations (EEO’s) listed above, we operate on the
augmented matrix using Elementary Row Operations (ERO's).

DEFINITION #4.  We define the Elementary Row Operations  (ERO's)
1.  Exchange two rows (avoid if possible since the determinant of the new coefficient matrix       
     changes sign).
2.  Multiply a row by a non zero constant (avoid if possible since the determinant of the new 
     coefficient matrix is a multiple of the old one).
3.  Replace a row by itself plus a scalar multiple of another row (the determinant of the new 
     coefficient matrix is the same as the old one).

There is a clear one-to-one correspondence between systems of linear algebraic equations and
augmented matrices including a correspondence between EEO’s and ERO’s.  We say that the two
structures are isomorphic.  Using this correspondence and the theorems on EEO’s from the
previous handout, we immediately have the following theorems.

THEOREM #1.  Suppose a system of linear equations is represented by an augmented matrix
which we call the original augmented matrix (OAM) and that the OAM is operated on by an ERO
to obtain a new augmented matrix (NAM).  Then the system of equations represented by the new
augmented matrix (NAM) has the same solution set as the system represented by the original
augmented matrix (OAM).

THEOREM #2.  Every ERO has an inverse ERO of the same type.

DEFINITION #5.  If  A  and  B  are m×n (coefficient or augmented) matrices over the field F, we
say that  B  is row-equivalent to A if  B  can be obtained from  A by finite sequence of ERO's.
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THEOREM #3.  Row-equivalence is an equivalence relation (Recall the definition of
equivalence relation given in the remedial notes or look up it up in a Modern Algebra text).

THEOREM #4  If  A  and  B  are m×n augmented matrices which are row-equivalent, then the
systems they represent are equivalent (i.e., have the same solution set).

Proof idea.  Suppose  A = A0  A1    Ak = B.  Using induction and Theorem #1, the two
systems can be shown to have the same solution set.

DEFINITION #6.  If  A is a m×n (coefficient or augmented) matrices over the field F, we call the
first nonzero entry in each row its leading entry.  We say that A is  in row-echelon form if: 
1. All entries below a leading entry are zero,
2. For i =2, ..., m, the leading entry in row i is to the right of the leading entry in row (i1),
3. All rows containing only zeros are below any rows containing nonzero entries.
If, in addition, 
4. The leading entry in each row is one,
5. All entries above a leading entry are zero,
then A is in reduced-row-echelon form (or row-reduced-echelon form). 
If A is in row-echelon form (or reduced-row-echelon form) we refer to the leading entries as
pivots.

For any matrix A, Gauss Elimination (GE) will always obtain a row-equivalent matrix U that is in
row-echelon form.  Gauss-Jordan Elimination (GJE) will yield a row-equivalent matrix R that is in

reduced-row-echelon form.      A b U c R d

GE GJE

 
 

EXAMPLE #1.  To illustrate Gauss elimination we consider an example:

  2x +  y + z  =  1 (1)
  4x +  y        = -2 (2)
2x + 2y + z =  7 (3)

It does not illustrate the procedure completely, but is a good starting point.  The solution set S
for (1), (2) and (3) is the set of all ordered triples,  [x,y,z]  which satisfy all three equations.  That
is, 

S = {  = [x, y, z]  R3 : Equations (1), (2), and (3) are true }
x

The coefficient and augmented matrices are  
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  A =   [A ] =  

x y z
2 1 1
4 1 0
2 2 1


















b

  x  y z RHS

2 1 1 1 represents equation 1
4 1 0 2 represents equation 2
2 2 1 7 represents equation 3


  
 

Note that matrix multiplication is not necessary for the process of solving a system of linear
algebraic equations.  However, you may be aware that we can use matrix multiplication to write
the system (1), (2), and (3) as A  =  where now it is mandatory that  be a column vector

x

b x

instead of a row vector. Also  = [1, 2, 7]T is a column vector.  (We use the transpose notation

b

to save space and paper.)

GAUSS ELIMINATION.  We now use the elementary row operations (ERO's) on the example in
a systematic way known as (naive) Gauss (Jordan) Elimination to solve the system.  The
process can be divided into three (3) steps.

Step 1.  Forward Elimination (obtain zeros below the pivots).This step is also called the
(forward) sweep phase.

         R 2R
R R

2 1 1
4 1 0
2 2 1

1
2

7
2 1

3 1


 



















3 2

2 1 1 1
0 1 2 4

R 3R 0 3 2 8

 
    
   

2 1 1
0 1 2

0 4

1

4
 



















0

4

This completes the forward elimination step.  The pivots are the diagonal elements 2, -1, and -4. 
Note that in getting zeros below the pivot 2, we can do 2 ERO’s and only rewrite the matrix
once.  The last augmented matrix represents the system.

      2x  +  y  +  z =  1 We could now use 4z = 4   z =  1
              y  2z = 4 back substitution y = 4 + 2z = 4 + 2(1) = 2  y = 2
                     4z = 4 . to obtain 2x = 1 y z = 1 (2) (1) = 2  x = 1.

The unique solution is sometimes written in the scalar form as x = 1, y = 2, and z = 1, but is
more correctly written in the vector form as the column vector [1,2,1]T.  Instead of back
substituting with the equations, we can use the following two additional steps using the
augmented matrix.  When these steps are used, we refer to the process as Gauss-Jordan
elimination.

Step 2.  Gauss-Jordan Normalization (Obtain ones along the diagonal).
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1/ 2 R

R
1/ 4 R

2 1 1
0 -1 - 2
0 0 - 4

1
4

- 4

1

2

3






















1 1/ 2 1/ 2
0 1 2
0 0 1

1/ 2
4
1

















 
We could now use back substitution but instead we can proceed with the augmented matrix.

Step 3.  Gauss-Jordan Completion Phase (Obtain zeros above the pivots)  
Variation #1  Right to Left.

    
1 3

2 3

nR 1/2nR 1 1/2 1/2 1/2
R 2R 0 1 2 4

0 0 1 1

  
   
  

1 2nR 1/2nR 1 1/2 0 0
0 1 0 2
0 0 1 1

  
 
 
  

1 0 0 -1
0 1 0 2
0 0 1 1

 
 
 
  

x 1
y 2
z 1

 



Variation #2 (Left to Right)

   
1 2nR 1/ 2 R 1 1/2 1/2 1/2

0 1 2 4
0 0 1 1

  
 
 
  

1 3

2 3

nR 1/2nR 1 0 -1/2 3/2
R 2R 0 1 2 4

0 0 1 1

  
   
  

1 0 0
0 1 0
0 0 1

-1
2
1

















x 1
y 2
z 1

 



Note that both variations as well as back substitution result in the same solution, . Tx = [-1,2,1]


It should also be reasonably clear that this algorithm can be programmed on a computer.  It
should also be clear that the above procedure will give a unique solution for  n  equations in  n 
unknowns in a finite number of steps provided zeros never appear on the diagonal.  The case
when zeros appear on the diagonal and we still have a unique solution is illustrated below.  The
more general case of  m  equations in  n  unknowns where three possibilities exist is discussed
later.

EXAMPLE #2.  To illustrate the case of zeros on the diagonal that are eliminated by row
exchanges consider:

           y   2 z   =  4 (4)
       4 z   =  4 (5)

  2x    + y   +    z   =  1 (6)

The augmented matrix is  

 [A ]   =    

b

  x  y z RHS

0 1 2 4 representsnequationn1
0 0 4 4 representsnequationn2
2 1 1 1 representsnequationn3

   
   
 

Note that there is a zero in the first row first column so that Gauss Elimination temporarily breaks
down.  However, note that the augmented matrix is row equivalent to those in the previous
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problem since it is just the matrix at the end of the forward step of that problem with the rows in a
different order  To establish a standard convention for fixing the breakdown, we go down the first
column until we find a nonzero number.  We then switch the first row with the first row with a
nonzero entry in the first column.  (If all of the entries in the first column are zero, then x can be
anything and is not really involved in the problem.)  Switching Rows one and three we obtain

       





 





















0 1 2
0 0 4
2 1 1

4
4

1

2 1 1
0 0 4
0 1 2

1
4
4


 




















The 2 in the first row, first column is now our first pivot.  We go to the second row, second
column.  Unfortunately, it is also a zero.  But the third row, second column is not so we switch
rows.

       
2 1 1 1
0 0 4 4
0 1 2 4

 
    
     

2 1 1
0 1 2
0 0 4

1
4
4

 





















We now have the same augmented matrix as given at the end of the forward step for the previous
problem.  Hence the solution is x = 1, y = 2, and z = 1.  This can be written as the column vector
x = [1, 2, 1 ]T.

EXERCISES on Introduction to Gauss Elimination
EXERCISE #1.  True or False.
_____ 1. An elementary equation operation (EEO) that can be used on a set of linear algebraic 
              equations which does not change the solution set is “Exchange two equations”.
_____ 2. An elementary equation operation (EEO) that can be used on a set of linear algebraic 
               equations which does not change the solution set is “Multiply an equation by a nonzero 
               constant”.
_____ 3. An elementary equation operation (EEO) that can be used on a set of linear algebraic 
               equations which does not change the solution set is “Replace an equations by itself plus 
               a scalar multiple of another equation”.
_____ 4. An elementary row operation (ERO) of type one that can be used on a matrix is
               “Exchange two rows”. 
_____ 5. An elementary row operation (ERO) of type two that can be used on a matrix is
               “Multiply a row by a nonzero constant”
_____ 6. An elementary row operation (ERO) of type three that can be used on a matrix is
              “Replace a row by itself plus a scalar multiple of another row”.
_____ 7. There is a clear one-to-one correspondence between systems of linear algebraic
                equations and augmented matrices including a correspondence between EEO’s and
               ERO’s so that we say that the two structures are isomorphic.  
_____ 8. Every ERO has an inverse ERO of the same type.
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_____ 9. If  A  and  B  are m×n (coefficient or augmented) matrices over the field K, we say that 
               B  is row-equivalent to A if  B  can be obtained from  A by finite sequence of ERO's.
_____ 10. Row-equivalence is an equivalence relation 
_____ 11. If  A  and  B  are m×n augmented matrices which are row-equivalent, then the systems 
                  they represent are equivalent (i.e., have the same solution set)
_____ 12. If  A is a m×n (coefficient or augmented) matrix over the field K, we call the first
                  nonzero entry in each row its leading entry.  

EXERCISE #2.  Solve 4x +  y        = -2  
2x + 2y + z =  7

                                      2x +  y + z  =  1

EXERCISE #3.   Solve x1 +  x2 +  x3 + x4 =  1       
                                      x1 + 2x2  + x3     =  0          
                                                     x3 + x4  = 1                        
                                          x2 + 2x3 +  x4  = 1            

EXERCISE #4.  Solve  4x +  y        = -2  
2x + y + z =  7

                                      2x +  y + z  =  1

EXERCISE #5.   Solve  x1 +  x2 +  x3 + x4 =  1    
                                        x1 + 2x2  + x3     =  0       
                                                         x3 + x4  = 1                     
                                                x2 + 2x3 + 2x4  = 3

EXERCISE #6.  Solve  4x +  y        = -2  
2x + 2y + z = 5

                                      2x +  y + z  =  1

EXERCISE #7.  Solve  4x +  y        = -2  
2x + 2y + z = 1

                                      2x +  y + z  =  1
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Handout #3 CONNECTION WITH MATRIX Professor Moseley
ALGEBRA AND ABSTRACT LINEAR ALGEBRA

By using the definition of matrix equality we can think of the system of scalar equations 

a 11  x 1  +  a 12  x 2 +    + a 1n  x n = b 1
a 21  x 1  +  a 22  x 2 +    + a 2n  x n = b 2
                             (1)
                            
                            
a m1  x 1  +  a m2  x 2 +    + a mn  x n = b m

as one “vector” equation where “vector” means an n-tuple or column vector.  By using matrix
multiplication (1) can be written as

(2)
mxn nx1 mx1
A x b

 


where

 =  [xi]  Kn,    =  [bi]Km,   A =  = [aij]Kmxn .
x

x
x

x

1

2

n

































b

b
b

b

1

2

m
































a a a
a a a

a a a

11 12 1n

21 22 2n

m1 m21 mn

  
  

  
  
  

  



























If we think of Kn and Km as vector spaces, we can define 

T( ) = (3)
x A x

mxn nx1



so that T is a mapping from Kn to Km.  We write T: Kn    Km.  A mapping from a vector space
to  another vector space is called an operator.  We may now view the system of scalar equations
as the operator equation:  

T( ) =  (4)x

b

A column vector  Kn is a solution to (4) if and only if it is a solution to (1)  or (2).  Solutions
x

to (4) are just those vectors   in Kn  that get mapped to  in Km by the operator T.  The
x


b

equation 
T( ) = (5)
x


0

is called homogeneous and is the complementary equation to (4).  Note that it always has 
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 =  = [0, 0, ... , 0]T  Kn as a solution.  =  is called the trivial solution to (5) since it is 
x


0 x


0

always a solution.  The question is “Are there other solutions?” and if so “How many?”.  We 
now have a connection between solving linear algebraic equations, matrix algebra, and abstract 
linear algebra.  Also we now think of solving linear algebraic equations as an example of a
mapping problem where the operator T:Rn  Rm is defined by (3) above.  We wish to find all 
solutions to the mapping problem (4).  To introduce this topic, we define what we mean by a 
linear operator from one vector space to another.

DEFINITION #1.  An operator T:V  W is said to be linear  if    ,   V  and scalars  α,β, 
x y

it is true that
                T( α  + β ) = α T( )  + β T( ). (6)x y x y

T: Kn    Km defined by  T( ) =   is one example of a linear operator.  We will give others 
x A x

mxn nx1



later.  To connect the mapping problem to matrix algebra we reveal that if m = n, then (1) (2) and 
(4) have a unique solution if and only if the matrix A is invertible.  

THEOREM #1.  Suppose m = n so that (1) has the same number of equations as unknowns. 
Then (1), (2), and (4) have a unique solution if and only if the matrix A is invertible.

EXERCISES on Connection with Matrix Algebra and Abstract Linear Algebra

EXERCISE #1.  True or False.
_____ 1. Since  Kn and Km are vector spaces, we can define T( ) =  so that T is a

x A x
mxn nx1



               mapping from Kn to Km. 
_____ 2. A mapping from a vector space to  another vector space is called an operator.  
_____ 3. Solutions to  are just those vectors   in Kn  that get mapped to  in Km

mxn nx1 mx1
A x b

 
 x


b

              by the operator T( ) =  . 
x A x

mxn nx1



_____ 4. The equation T( ) = is called homogeneous and is the complementary equation to 
x


0

                where  T( ) = . 
mxn nx1 mx1
T x b

 
 
 
 


 x A x

mxn nx1



_____ 5.  =  is called the trivial solution to the complementary equation to .
x


0

mxn nx1 mx1
A x b

 


_____ 6. An operator T:V  W is said to be linear  if    ,   V  and scalars  α,β,  it is true
x y

             that T( α  + β ) = α T( )  + β T( ).x y x y
_____ 7. The operator T: Kn to Km defined by T( ) =  is a linear operator.

x A x
mxn nx1



_____ 8.  has a unique solution if and only if the matrix A is invertible.
nxn nx1 nx1
A x b
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