
Handout #3 SUBSPACE OF A VECTOR SPACE Professor Moseley

An important concept in abstract linear algebra is that of a subspace.  After we have
established a number of important examples of vector spaces, we may have reason to examine
subsets of these vector spaces.  Some subsets are subspaces, some are not.  It is important to be
able to determine if a given subset is in fact a subspace.

In general in mathematics, a set with structure is called a space.  A subset of a space that
has the same structure as the space itself is called a subspace.  Sometimes, all subsets of a space
are subspaces with the induced mathematical structure.  However, all subsets of a vector (or
linear) space need not be subspaces.  This is because not all subsets have a closed algebraic
structure.  The sum of two vectors in a subset might not be in the subset.  A scalar times a vector
in the subset might not be in the subset.

DEFINITION #1.  Let  W  be a nonempty subset of a vector space  V.  If for any vectors  
,   W and scalars  α,β  K (recall that normally the set of scalars  K  is either R or C), we 

x y
have that α  + β   W, then  W  is a subspace of  V.

x y

THEOREM #1.  A nonempty subset  W  of a vector space  V  is a subspace of  V  if and only if 
for ,   V  and  α  K (i.e. α  is a scalar) we have.

x y
 i) ,   W  implies   +   W, and
x y x y

ii)    W  implies  α  W.
x x

TEST FOR A SUBSPACE.  Theorem #1 gives a good test to determine if a given subset of a
vector space is a subspace since we can test the closure properties separately.  Thus if  W  V
where V is a vector space, to determine if W is a subspace,we check the following three points.

1)  Check to be sure that  W  is nonempty.  (We usually look for the zero vector since if 
     there is W, then 0  =  must be in W.  Every vector space and every subspace x x 0



     must contain the zero vector.)
2)  Let  and   be arbitrary elements of  W  and check to see if   +   is in  W.  

x y x y
                  (Closure of vector addition)
   3)   Let  be an arbitrary element in  W  and check to see if  α  is in W. 

x x
                  (Closure of scalar multiplication).

The checks can be done in different ways.  For example, by using an English description of the
subspaces, by visualizing the subspaces geometrically, and by using mathematical notation (which
you may have to develop).  Although, in some sense any clear argument to validate the three
properties constitutes a proof, mathematicians prefer a proof using mathematical notation since
this does not limit one to three dimensions, avoids the potential pitfalls of vagueness inherent in
English prose, and usually is more terse.  Hence we will refer to the use of English prose and the
visualization of subspaces geometrically as checks, and the use of mathematical notation as a
proof.  Use English prose and geometry to check in your mind.  Learn to write algebraic proofs
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using mathematical notation to improve your understanding of the concept.

EXAMPLE #1.  Let R3 = {(x,y,z): x,y,zR} and W be the subset of V which consists of vectors
whose first and second components are the same and whose third component is zero.  In
mathematically (more concise)notation we can define W as W = {(α,α,0): α  R}.  (Since matrix
multiplication is not needed, we use row vectors rather than column vector to save space.)  Note
that the scalars are the reals.  

English Check.  We first check to see if  W  is a subspace using English.
  1) "Clearly"  W  is nonempty since, for example if  α = 0, the vector (0,0,0) is in  W.  Recall 
        that the zero vector must always be in a subspace.
  2)  If we add two vectors in W (i.e. two vectors whose first two components are equal and 
      whose third component is zero), "clearly" we will get a vector in  W (i.e. a vector whose first 
     two components are equal and whose third component is zero).  Hence  W  is closed under 
     vector addition.
  3)  If we multiply a vector in  W (i.e. a vector whose first two components are equal and whose 
       third component is zero) by a scalar, "clearly" we will get a vector in  W  (i.e. a vector whose
       first two components are equal and whose third component is zero).  Hence  W  is closed 
       under scalar multiplication.

Note that if the parenthetical expressions are removed, the above "check" does not explain or
prove anything.  Hence, after a geometrical check,  we give a more mathematical proof using the
definition of  W as W = {(α,α,0): α  R}.

Geometrical Check.  Since we can sketch  R3  in the plane R2  we can give a geometrical
interpretation of  W  and can in fact check to see if  W  is a subspace geometrically.  Recall that
geometrically we associate the algebraic vector  = (x,y,z)  R3  with the geometric position 

x
vector (directed line segment) whose tail is the origin and whose head is at the point (x,y,z).  
Hence  W  is the set of position vectors whose heads fall on the line through the origin and the 
point (1,1,0).  Although technically incorrect, we often shorten this and say that  W  is the line 
through the origin and point (1,1,0).
  1) The line  W, (i.e. the line through (0,0,0) and (1,1,0) ) "clearly" contains the origin
       (i.e. the vector  = (0,0,0) ).


0

  2)  If we add two vectors whose heads lie on the line  W  (i.e. the line through (0,0,0) and 
       (1,1,0)), "clearly" we will get a vector whose head lies on the line  W (i.e. the line through 
       (0,0,0) and  (1,1,0) ).  (Draw a picture.)  Hence  W  is closed under vector addition.
  3)  If we multiply a vector whose head lies on the line through W (i.e. the line through (0,0,0) 
       and (1,1,0) ) by a scalar, "clearly" we will get a vector whose head lies on the line through 
      (0,0,0) and (1,1,0).  (Again, draw a picture.)  Hence  W  is closed under scalar multiplication.

THEOREM #2.  The set W =  {(α,α,0): α  R} is a subspace of the vector space R3.

Proof.  Let  W = {(α,α,0): α  R}.
   1) Letting  α = 0  we see that (0,0,0)  W  so that  W  .
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   2) Now let  = (α,α,0)  and   = (β,β,0) so that  , y  W.  Then
x y x y

                STATEMENT                                                          REASON
+  = (α,α,0)  + (β,β,0)                                              Notation

x y
            = (α+β,α+β,0)  .                                       Definition of Vector Addition in 3

"Clearly" (α+β,α+β,0)  W  since it is of the correct form.  Hence  W  is closed under
          vector addition.
   3) Let  = (α,α,0) and a  R  be a scalar.  Then

x

                STATEMENT        REASON
  a  = a(α,α,0) Notation

x
       = (aα,aα,0). Definition of Scalar Multiplication in 3

"Clearly" (aα,aα,0)  W  since it is of the correct form.  Hence  W  is closed under scalar
           multiplication.

Q.E.D.

Note that the proof is in some sense more convincing (i.e. more rigorous) than the
English check or a geometric check.  However we did have to develop some notation to do the
proof.  

EXAMPLE #2.  Let V = (I)  be the set of real valued functions on I=(a,b) where a<b.  Now let
W=C(I) be the set of continuous functions on I.  Clearly W=C(I) is a subset of V =(I).   Note
that the scalars are the reals.  

English Check.  We first check to see if  W  is a subspace using English.
  1) "Clearly"  W  is nonempty since, for example f(x) =x2 is a continuous function in C(I).  Also, 
       f(x) =0 is continuous as is required for W to be a subspace.
  2)  If we add two continuous functions, we get a continuous function so that sums of functions 
       in W are in W.  Hence  W  is closed under vector addition.  (Recall that this is a theorem 
       from calculus.)
  3)  If we multiply a continuous function by a scalar, we get a continuous function.  Hence  W  is 
       closed under scalar multiplication.  (Recall that this is anther theorem from calculus.)

“Clearly” there is no “geometrical” check that W is a subspace.  The reason is that C(I) is infinite
dimensional and hence a geometrical picture is not possible.  The concept of a basis for a vector
space or subspace and that of dimension will be discussed later.)  

The informal English check can be upgraded to a mathematical proof by a careful rewording and
by citing references for the appropriate theorems from calculus.

We close by noting that a subspace is in fact a vector space in its on right using the vector
addition and scalar multiplication of the larger vector space.
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THEOREM #3.  Suppose WV where V is a vector space over the scalars K.  If W is a subspace
of V, then all of the eight properties hold for all elements in W and all scalars in K (without
relying on any of the elements in V that are not in W).  Thus W with the vector addition and
scalar multiplication of V (but without the elements in V that are not in W) is a vector space.  

EXERCISES on Subspace of a Vector Space

EXERCISE #1.  True or False.
For all questions, assume V is a vector space over a field K, , , V are any vectors and x

y z
α,ß K are any scalars.  

_____ 1. If  WV is a nonempty subset of a vector space V and  for any vectors  ,   W and
x y

               scalars  α,β  K, we have that α  + β   W, then  W  is a subspace of  V.
x y

_____ 2.  A nonempty subset  W  of a vector space  V  is a subspace of  V  if and only if for 
              ,   V  and  α  K (i.e. α  is a scalar) we have  i) ,   W  implies   +   W,

x y x y x y
              and ii)    W  implies  α  W.

x x
_____ 3. If  W is a subspace of V, then W is nonempty.
_____ 4. If  W is a subspace of V, then for any arbitrary vectors  and   in W, the sum

x y
                 +   is in  W. 

x y
_____ 5. If  W is a subspace of V, then for any arbitrary vector  in W and scalar αK,  α  is

x x
                in W. 
_____ 6. If W be the subset of V= R3  which consists of vectors whose first and second 
              components are the same and whose third component is zero, then W is a subspace of V.
_____ 7. W = {(α,α,0): α  R} is a subspace of R3.
_____ 8. W = {(α,0,0): α  R} is a subspace of R3.
_____ 9. If  I = (a,b), then C(I,R) is a subspace of F  (I,R).
_____ 10. If  I = (a,b), then A  (I,R) is a subspace of F  (I,R).
_____ 11. If  I = (a,b), then A  (I,R) is a subspace of C(I,R).

EXERCISE #2. Let R3 = {(x,y,z): x,y,zR} and W be the subset of V which consists of vectors
where all three components are the same.  In mathematically (more concise) notation we can
define W as W = {(α,α,α): α  R}.  (Since matrix multiplication is not needed, we use row
vectors rather than column vector to save space.)  Note that the scalars are the reals.  If possible,
do an English check, a geometric check, and a proof that W is a subspace. 

EXERCISE #3. Let R3 = {(x,y,z): x,y,zR} and W be the subset of V which consists of vectors
where second ands third components are zero.  In mathematically (more concise) notation we can
define W as W = {(α,0,0): α  R}.  (Since matrix multiplication is not needed, we use row vectors
rather than column vector to save space.)  Note that the scalars are the reals.  If possible, do an
Englishcheck, a geometric check, and a proof that W is a subspace. 
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EXERCISE #4. Let R3 = {(x,y,z): x,y,zR}, R4 = {(x1,x2,x3, x4): x1,x2,x3, x4R}.  Consider the
following subsets W of these vector sapaces.  Determine which are subspaces.  (Since matrix
multiplication is not needed, we use row vectors rather than column vector to save space.)  Note
that the scalars are the reals.  For each subset, first write an English description of the subset.  If
possible, do an English check, a geometric check, and a proof that W is a subspace.  If W is not a
subspace explain clearly why it is not.  In mathematically (more concise) notation we define W as
1. W = {(α,1,0): α  R} R3. 
2. W = {(x,y,z): x2 + y2 + z2 =1 and x,y,z R} R3

3. W =  {(α,β,0): α,β  R}R3. 
4. W = {(α,β,0,0): α,β  R}R4 .
5.  W = {(α,α,α,α): α  R}R4

6.  W = {(α,α,β,β): α,β  R}R4
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