
A SERIES OF CLASS NOTES  TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS
TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS

LINEAR CLASS NOTES:
A COLLECTION OF HANDOUTS FOR 

REVIEW AND PREVIEW 
OF LINEAR THEORY 

INCLUDING FUNDAMENTALS OF 
LINEAR ALGEBRA

CHAPTER 3

Vector Spaces and Subspaces 

1. Definition of a Vector Space

2. Examples of Vector Spaces

3. Subspace of a Vector Space

Ch. 3 Pg. 1



Handout #1 DEFINITION OF AN ABSTRACT VECTOR SPACE Professor Moseley

Abstract linear algebra begins with the definition of a vector space (or linear space) as
an abstract algebraic structure.  We may view the eight properties in the definition as the
fundamental axioms for vector space theory.  The definition requires knowledge of another
abstract algebraic structure, a field where we can always add (and subtract) as well as multiply
(and divide except for zero), but nothing essential is lost if you always think of the field (of
scalars) as being the real or complex numbers (Halmos 1958,p.1).

DEFINITION #1.  A nonempty set of objects (vectors), V, together with an algebraic field (of
scalars) K, and two algebraic operations (vector addition and scalar multiplication) which
satisfy the algebraic properties listed below (Laws of Vector Algebra) comprise a vector space. 
(Following standard convention, although technically incorrect, we will usually refer to the set of
vectors  V  as the vector space).  The set of scalars  K  are usually either the real numbers R  or
the complex numbers C  in which case we refer to V  as a real or complex vector space.  Let 

, , ε V  be any vectors and  α,ß ε K  be any scalars.  Then the following must hold:x
y z

VS1)   + ( + ) = ( + ) + Associativity of vector addition      
x y z x y z

VS2)    +  = + Commutativity of vector addition   
x y y x

VS3)  There exists a vector  , Existence of a right additive identity

0

            such that for every V, +  = vector for vector addition               
x x


0 x

VS4)  For each V, there exist a vector, denoted Existence of a right additive inverse 
x

          by , such that + ( ) = . vector for each vector in V              - x
x - x


0

VS5)   α (ß ) = ( αß) An associativity property for scalar 
x x

multiplication                                  
VS6) (α+ß) = (α ) + (ß ) A distributive property for scalar    

x x x
multiplication and vector addition  

VS7)  α( + )= (α ) + (α ) Another distributive property for scalar 
x y x y

multiplication and vector addition         
VS8)   1  =  A scaling property for scalar multiplication

x x

These eight properties are an essential part of the definition of a vector space.  In abstract algebra
terminology, the first four properties establish a vector space with vector addition as an Abelian 
(or commutative) group (another abstract algebraic structure).  The last four properties give
rules on how vector addition and scalar multiplication must behave together.   

Although technically not correct, we often refer to the set V of vectors as the vector
space.  Thus the R, R2,R3, Rn, and Rm×n are referred to as real vector spaces and C, Cn, and Cm×n

as complex vector spaces.  Also Q, Qn and Qm×n, and indeed, K, Kn, and Km×n  for any field are
referred to as vector spaces.  However, the definition of a vector space requires that its structure
be given.  Thus to rigorously represent a vector space, we use a 5-tuple consisting of 1) the set of
vectors, 2) the set of scalars, 3) vector addition, 4) scalar multiplication, and 5) the zero vector
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(which is the only vector required to be in all vector spaces).  Thus V  = (V, K, +,  , ).  (Since

0

we use juxtaposition to indicate scalar multiplication, we have no symbol for multiplication of a
vector by a scalar and hence just leave a space.) 

 We consider some properties that hold in all vector spaces (i.e., they are vector space
properties like the original eight, but unlike the original eight, these follow from the original eight
using mathematical logic).  Specific examples of vector spaces are given in the next handout. 
Once they have been shown to be vector spaces, it is not logically necessary to show directly that
the properties in Theorems #1, #2 and #3 and Corollary #4 hold in these spaces.  The properties
hold since we can show that they are vector space properties (i.e., they hold in an abstract vector
space).  However, you may wish to check out these properties in specific vector spaces (i.e.,
provide a direct proof) to improve your understanding of the concepts.  We start with an easy
property for which we provide proof.

THEOREM #1. Let V = (V,K, +, , ) be a vector space.  Then for all V,   +  = .

0 x


0 x x

Proof.  Let  be any vector in V and let  be the right additive identity for V (or V).  Then
x


0

STATEMENT REASON
 +  =  +  VS2. Vector addition is commutative

0 x x 0



         = VS3   is the right  additive identity element
x


0

for V (or V   ).
Hence for all V,   +  =  (i.e.,  is a left additive identity element as well as a right

x

0 x x


0

additive identity element ).
Q.E.D.

As in the proofs of any identity, the replacement of  +  by is effected by the property of

0 x x

equality that says that in any equality, a quantity may be replaced by an equal quantity.  (Note that
the second equality is really  +  =  as the LHS is assumed.)  This proof is in some sense


0 x x

identical to the proof that for all xK, 0 + x = 0 for fields.  This is because the property is really a
group theory property and vectors with vector addition (as well as scalars with scalar addition)
form groups.  We now list additional properties of a vector space that follow since the vectors in
a vector space along with vector addition form a group.  Since  is both a left and right additive


0

identity element, we may now say that it is an additive identity element. 

THEOREM #2.    Let V be a vector space over the field K.  (i.e., Let V = (V, K, +, , ) be a

0

vector space.)  Then 
1.  The zero vector is unique (i.e., there is only one additive identity element in V).
2.  Every vector has a unique additive inverse element.
3.  is its own additive inverse element (i.e., ,  +  = ).

0


0


0


0

4.  The additive inverse of an additive inverse element is the element itself.  (i.e., if -  is the 
x

     additive inverse of  , then ( ) =   ).
x x x
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5.  (  = ) =(  ) +(  ).  (i.e., the additive inverse of a sum is the sum of their additivex y x y

      inverses.)
6.  Sums of vectors can be written in any order you wish.
7.  If   +  =  + , then  = .  (Cancellation Law for Addition)

x y x z y z

We now give a theorem for vector spaces analogous to the one for fields that says that if the
product of two numbers is zero, one of the numbers must be zero.

THEOREM #3.  Let V be a vector space over the field K.  (i.e., Let V = (V, K, +, , ) be a

0

vector space.  The scalars K may be thought of as either R or C so that we have a real or
complex vector space, but V may not be thought of as Rn or Cn.)
1.   V, 0 =  .

x x

0

2.  α K, α  = 

0


0

3.  α  K,     V, α  =   implies either  α = 0 or  = .
x x


0 x


0

COROLLARY#4 (Zero Product).  Let V be a vector space over the field K.  (K may be thought
of  is either R or C.)  Let α K, V.  Then  α  =    if and only if  α = 0 or  = . 

x x

0 x


0

In the abstract algebraic definition of a vector space, vectors do not have a magnitude (or length). 
Later, we will discuss normed linear spaces where this structure is added to a vector space. 
However, the concept of direction, in the sense indicated in the following theorem,  is in all
vector spaces. 

DEFINITION #2.  Let V  be a vector space over a field K.  Two nonzero vectors ,  V are 
x y

said to be parallel if there is a scalar αK such that  α  = .  (The zero vector has no
x y

direction.)  If V is a real vector space so that K=R, then two (non-zero) parallel vectors are in the
same direction if  α>0, but in opposite directions if α<0.

EXERCISES on The Definition of an Abstract Vector Space

EXERCISE #1.  True or False.
For all questions, assume V is a vector space over a field K, , , V are any vectors and x

y z
α,ß K are any scalars.  
_____ 1.  The following property is an axiom in the definition of a vector space: 
                VS)   + ( + ) = ( + ) +  

x y z x y z
_____ 2.  The following property is an axiom in the definition of a vector space: 
                VS)    +  = +

x y y x
_____ 3.  The following property is an axiom in the definition of a vector space: 
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               VS)There exists a vector    such that for every V, +  = 

0 x x


0 x

_____ 4.  The following property is an axiom in the definition of a vector space: 
                VS)   For each V, there exist a vector, denoted by , such that + ( ) = . 

x - x
x - x


0

_____ 5.  The following property is an axiom in the definition of a vector space: 
                VS)  )   α (ß ) = ( αß)  

x x
_____ 6.  The following property is an axiom in the definition of a vector space: 
               VS)   (α+ß) = (α ) + (ß )

x x x
_____ 7.  The following property is an axiom in the definition of a vector space: 
                VS)  α( + )= (α ) + (α )

x y x y
_____ 8.  The following property is an axiom in the definition of a vector space: 
                VS)  )   1  =     

x x
_____ 9. In V, vector addition is associative.
_____ 10. In V, vector addition is commutative.
_____ 11.In V, for vector addition, there exist a right additive identity such that for every V, 

x
               +  = . 

x

0 x

_____ 12. For vector addition, every vector in V has a right additive inverse, denoted by , x

                such that .              x +( x) = 0
 

_____ 13. For all V, we have   +  = .
x


0 x x

_____ 14. In V, the zero vector is unique.
_____ 15. There is only one additive identity element in V
_____ 16.  In V, every vector has a unique additive inverse element.
_____ 17. In V,  is its own additive inverse element 


0

_____ 18. The additive inverse of an additive inverse element is the element itself
_____ 19.  if    is the  additive inverse of   in V, then ( ) =  .

x x x x
_____ 20. α  K,   V, α  =   implies either  α = 0 or  = .

x x

0 x


0

Halmos, P. R.1958, Finite Dimensional Vector Spaces (Second Edition) Van Nostrand Reinhold
Company, New York.
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Handout #2 EXAMPLES OF VECTOR SPACES Professor Moseley

If we define a specific set of vectors, a set of scalars and two operations that satisfy the
eight properties in the definition of a vector space (i.e., the Laws or Axioms of Vector Algebra)
we obtain an example of a vector space.  Note that this requires that the eight properties given in
the definition of an (abstract) vector space be verified for the (concrete) example.  We give
examples of vector spaces, but the verification that they are indeed vector spaces is left to the
exercises.  We also give two ways of building a more complicated vector space from a given
vector space.

EXAMPLE #1.  The set of sequences of a fixed length in a field K.  Since we are not interested
in matrix multiplication at this time, we may think of them not only as sequences, but as column
vectors or as row vectors.  When we consider linear operators, we wish them to be column
vectors and so we use this interpretation.  For example, if K = R, we let

i)  V =    = Rnx1 Rnx

x

x

 :x R, i 1,2,3,.., n

1

n

i


























 



























  ii) The scalars are the real numbers R.
 iii) Vector addition is defined by

    +      =   .  (i.e. Add componentwise as in matrix addition)

x

x

1

n



























y

y

1

n



























x y

x y

1 1

n n





























 iv) Scalar multiplication is defined by

   α    =      .  (i.e. Multiply each component in  x  by  α as in multiplication 

x

x

1

n































x

x

1

n



























                                                                     of a matrix by a scalar.)

Again, the space of  row vectors:   V = {(x1,...,xn):  xiR, i = 1,...,n} = R1xn Rn  is technically
different from the space of column vectors.  However, as far as being a vector space is concerned,
the distinction is merely technical and not substantive.  Unless we need to make use of the
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technical difference we will denote both spaces by Rn.  We refer to Rn as the space of n-tuples of
real numbers whether they are written as row vectors or column vectors.  If we wish to think of
row vectors as  n × 1  matrices, column vectors as  1 ×  n  matrices, and consider matrix
multiplication, then we must distinguish between row and column vectors.  If we wish the scalars
to be the complex numbers, we must consider the space Cn of n-tuples of complex numbers.

EXAMPLE #2.  Consider the set Rm× n  of all matrices of real numbers with a fixed size,  m × n. 
We define vector addition as matrix addition.  (To find the sum of  two matrices, add them
componentwise.)  Scalar multiplication of a vector (i.e. a matrix) by a scalar is defined in the usual
way (multiply each component in the matrix by the scalar).  Note that matrix multiplication is not
required for the set of matrices of a given size to have the vector space structure.  The Laws of
Vector Algebra can be shown to hold and hence Rm× n is a vector space.  We may also consider
Cm×n, the set of all matrices of complex numbers.

EXAMPLE #3.  Function Spaces.  Let  (D,R) = {f: D  R}  where  D  R; that is, let  (D) 
be the collection of all real valued functions of a real variable which have a common domain  D  in 
R.  Often, D = I = (a,b).  The scalers will be R.  Vector addition is defined as function addition. 
Recall that a function  f  is defined by knowing (the rule that determines) the values  y = f(x) for
each  x  is the domain of  f.  Given two functions  f  and  g  whose domains are both  D, we can
define a new function h = f + g (h  is called the sum of  f  and  g) by the rule  h(x) = f(x) + g(x) 
for all  x  D.  Similarly we define the function  αf  by the rule  (αf)(x) = α  f(x)   for all  x  D. 
This defines scalar multiplication of a “vector” (i.e. a function) by a scalar.  The Laws of Vector
Algebra can be shown to hold and hence (D) is a vector space.  We may also define (D) to be
{f: D  C}  where  D  C.  That is, we may also let  (D) describe the set of all complex valued
functions of a complex variable that have a common domain D in C.  Function spaces are very
important when you wish to solve differential equations.

EXAMPLE #4.  Suppose VR is a real vector space.  We construct a complex vector space VC as 
follows: As a set, let VC = VR × VR = {( , ): , VR}.  However, we will use the Eulerian 

x y x y
notation,  =  + i  for elements in VC.  We define vector addition and scalar multiplication 

z x y
componentwise in the obvious way:
If   =  + i ,   =  + i VC, then  +  = ( + ) + i( + ).
z1

x1
y1

z2
x2

y2
z1

z2
x1

x2
y1

y2

If γ=α+iβC and    =  + i VC, then γ   = (α  β ) +i (β + α ). 
z x y z x y x y

It is straight forward to show that with these definitions,  all eight of the Laws of Vector Algebra 
are satisfied so that VC is a complex vector space.  We see that VR can be embedded in VC and 
hence can be considered as a subset of VC.  It is not a subspace (see the next handout) since they 
use a different set of scalars.  However, if scalars are restricted to R and vectors to the form 
  =  + i , then the vector space structure of VR is also embedded in VC.  
z x


0

It is important to note that this process can be done for any vector space VR.  If we start 
with R, we get C.  If we start with Rn, we get Cn.  If we start with Rm×n, we get Cm×n.  If we start 
with real functions of a real variable, we get complex functions of a real variable.  For example,
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the complex vector space C1(R2,C) = C1(R2,R)+iC1(R2,R) with vectors that are complex valued
functions of two real variables of the form u(x,y) +iv(x,y) with u,vC1(R2,R) will be of interest
later.  Since there is a one-to-one correspondence between R2 and C (in fact, they are isomorphic
as real vector spaces) and have the same topology (they have the same norm and hence the same
metric, see Chapter 8) we may identify C1(R2,R) with set of real valued functions of a complex
variable C1(C,R)= {u(z)= C1(R2):z=x+iy} and hence C1(R2,R)+iC1(R2,R) with ~u(x, y)
the complex vector space of complex valued functions of a complex variable 
C1(C,C) = C1(C,R)+iC1(C,R) of the form w(z) = u(z) +iv(z) where u,vC1(R2,R).

EXAMPLE #5.  Time varying vectors.  Suppose V is a real vector space (which we think of as a
state space).  Now let V(I) = {x(t):IV}=F (I,V) where I = (a,b)R.  That is, V is the set of all
”vector valued” functions on the open interval I.  (Thus we allow the state of our system to vary
with time.)  To make V(I) into a vector space, we must equip it with a set of scalars, vector
addition, and scalar multiplication.  The set of scalars for V(I) is the same as the scalars for V
(i.e.,R).  Vector addition and scalar multiplication are simply function addition and scalar
multiplication of a function.  To avoid introducing to much notation, the engineering convention
of using the same symbol for the function and the dependent variable will be used (i.e., instead of
y=f(x), we  use y=y(x) ).  Hence instead of  , for a function in V(I), we use  = (t).  

x = f(t)
x x

The context will explain whether  is a vector in V or a function in V(I).
x

1) If  , V(I), then we define +  pointwise as , ( + )(t) = (t) + (t).
x y x y x y x y

2) If V(I) and α is a scalar, then we define (α )(t) V(I) pointwise as (α )(t) = α (t).
x x x x

The proof that V(I) is a vector space is left to the exercises.  We use the notation V(t) instead of
V(I), when, for a math model, the interval of validity is unknown and hence part of the problem. 
Since V is a real vector space, so is V(t).  V(t) can then be embedded in a complex vector space
as described above.   Although we rarely think of time as being a complex variable, this is often
useful mathematically to solve dynamics problems since we may wish state variables to be
analytic.  Thus the holomorphic function spaces are of interest.

EXAMPLE #6.  (Holomorphic functions) Consider C1(R2,R)+iC1(R2,R).    
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EXERCISES on Examples of Vector Spaces

EXERCISE #1.  True or False.
For all questions, assume V is a vector space over a field K, , , V are any vectors and x

y z
α,ß K are any scalars.  

_____ 1.  V =    = Rn is a vector space.
x

x

x

 :x R, i 1,2,3,.., n

1

n

i


























 



























_____ 2. The scalars for the vector space R3 are the real numbers R.
_____ 3. Rmxn is a vector space
_____ 4.The scalars for the vector space R3x2 are the real numbers R.
_____ 5. C1x2 is a vector space
_____ 6. Rmxn is a real vector space
_____ 7. The scalars for the vector space R3x2 are the real numbers R.
_____ 8. The scalars for the vector space C3x2 are the real numbers R.
_____ 9. The scalars for the vector space R10 are the real numbers R.
_____ 10. R1x2 is a real vector space.
_____ 11. Cmxn is a real vector space.
_____ 12. The function space (D,R) = {f: D  R}  where  D  R is a vector space.
_____ 13. The set of all continuous functions on the open interrval I = (a,b), C(I,R), is a vector
                 space
_____ 14. The set of all analytic functions on the open interrval I = (a,b), A (I,R), is a vector
                 space.
_____ 15. The scalars for the vector space (D,R) = {f: D  R}  where  D  R are the real
                  numbers R.
_____ 16. (D,R) = {f: D  R}  where  D  R is a real vector space.
_____ 17.  The set of all real valued continuous functions on the open interrval I = (a,b), C(I,R), 
                   is a real vector space.
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