
Handout No.6 MULTIPLICATION BY A SCALAR Professor Moseley

DEFINITION #1.  Let    be an  m×n  matrix and  α  a scalar ( α  K where K is a field):A
mxn

=  = [aij]    Kmxn,         α K (e.g., K = R or K = C) (1)A
mxn

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

a a a
a a a

a a a

   
    
   
    
   
 

    

then we define the product of  α  and  A (called multiplication by a scalar, but not scalar
product) by

α =    =   [ α aij ]   Kmxn (1)A
mxn

  
  

  

a a a
a a a

a a a

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

  
  

  
  
  

  



























that is, αA  C = [cij] where  cij = αaij  for  i = 1,..., m  and j = 1,..., m.  That is, we multiply each
component in  A  by  α.  Again defining an arbitrary component  cij  of  αA  takes less space but is
less graphic, that is, does not give a good visualization of the operation.  However, you should
learn to provide that visualization, (i.e., look at  cij = αaij  and visualize each component being
multiplied by  α, for example, the nine element graphic above or the four corner graphic.) 
Sometimes we place the scalar on the right hand side (RHS): αA =α[aij] = [aij]α = Aα.

PROPERTIES.  The following theorems can be proved.

THEOREM #1.  Let  A  be an  m×n  matrix and 1 be the multiplicative identity in the associated
scalar field K (e.g., 1  R  or  1  C), then 1A = A.

THEOREM #2.  Let  A  and  B  be an  m×n  matrix and  α and β be scalars in K(e.g., α,β  R  or 
α,β  C), then
a.   α(βA) = (αβ)A  (Note the difference in the meaning of the two sets of parentheses.)
b.   (α + β)A = (αA) + (βA)  (Note the difference in the meaning of the two plus signs.)
c.   α(A+B) = (αA) + (βB)  (What about parentheses and plus signs here?)
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INVERSE OPERATION.  If  α is a nonzero scalar,  the division of a matrix A by the scalar α is
defined to be multiplication by the multiplicative inverse of the scalar.  Thus A/α = (1/α) A.

THEOREM #3.  Let A, B  Cm×n.  Then the following hold:
1) (αA)T   =  α AT

2)αA = αA
3) (αA)* = α A*

EXERCISES on Multiplication by a Scalar

EXERCISE #1.  Multiply  A by the scalar α if

a) α = 2 and      b) α = 2+i and A = [1,2]  c) α = 1 and  1 1 + i
A =

2 2 i

 
  

0 1 + i

A = 2e 3

1 i i

 
 
 
  

 d) α =1 /2 and  
2 + i

 A = 0

1 i

2



 
 
 
  

EXERCISE #2.  Compute  (αA)T  (that is, first multiply α by A and take the transpose) and then 
α AT  (that is, multiply α by A transpose) and show that you get the same answer if 

a) α = 2 and      b) α = 2+i and A = [1,2]    c) α = 1 and  1 1 + i
A =

2 2 i

 
  

0 1 + i

A = 2e 3

1 i i

 
 
 
  

 d) α = 1/2 and  
2 + i

 A = 0

1 i

2



 
 
 
  

EXERCISE #3.  Compute  (that is, multiply α by A and then compute the complex conjugate)αA
and then compute  (that is, compute  and then  and then multiply  by ) and  thenαA  A α A
show that you get the same answer if:

a) α = 2 and      b) α = 2+i  and A = [1,2]    c) α = 1 and  1 1 + i
A =

2 2 i

 
  

0 1 + i

A = 2e 3

1 i i

 
 
 
  

 d) α = ½  and   
2 + i

 A = 0

1 i

2
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Handout No.7 DOT OR SCALAR PRODUCT Professor Moseley

DEFINITION #1.  Let = [x1,x2,...,xn]  and = [y1,y2,...,yn] be row vectors in R1×n or C1×n (we
x y

could just as well use column vectors).  Then define the scalar product of  and  by
x y

     =  =  
x y x y +  x y  +  ...  +  x y1 1 2 2 n n x yi

i 1

n

i



In R2 and R3, this is usually called the dot product.  (In an abstract setting, this operation is
usually called an inner product.)

PROPERTIES.  The following theorem can be proved.

THEOREM #1.  Let  = [x1,x2,...,xn], = [y1,y2,...,yn], and = [z1,z2,...,zn] be row vectors in 
x y z

R1×n or C1×n; we could just as well use column vectors) and α be a scalar. Then    

    a.      =   =       

x


y y x  

y

x

    b.   (x y) z x y x z
      
     

    c.     = α (  )( x) y 
  x


y

    d.    x x 0 
 

          
   
x x 0 if and only if  x = 0 

The term inner product is used for an operation on an abstract vector space if it has all of the 
properties given in Theorem #1.  Hence we have that the operation of scalar product defined 
above is an example of an inner product and hence  R1×n and K1×n (and Rn×1 and  Cn×1 and Rn and
Cn) are inner product spaces.

EXERCISES on Dot or Scalar Product.

EXERCISE #1. Compute    if
x


y

a)     b)      c)[1,2,1], [2,3,1]x y 
  [1,2,3,4], [2,4,0,1]x y 

  [1,0,1,0], [1,2,0,1]x y 
 

EXERCISE #2. Compute    if

x


y

a)   b)   [1 ,2 ,0,1], [1 ,2 ,0,1]x i i y i i     
  [1 ,0,0, ], [1 ,2 ,0,1]x i i y i i    

 

c) [1,0,1, ], [1 ,2 ,0,1]x i y i i   
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Handout #8 MATRIX MULTIPLICATION Professor Moseley

Matrix multiplication should probably be called matrix composition, but the term matrix
multiplication is standard and we will use it.

DEFINITION #1.  Let = [ aij ],  = [ aij ].  Then = AB = [ cij ] where  .A
mxp

B
pxn

C
mxn

c = a bij ik
i 1

p

kj



Although the definition of the product matrix C is given without reference to the scalar product, it
is useful to note that the element cij is obtained by computing the scalar product of the ith row of A
with the jth column of B and placing this result in the ith row and jth column of C.  Using tensor

notation, we may just write .  If we adopt the Einstein summation convention ofc = a bij ik
i 1

p

kj



summing over repeated indices, then this may be written as cij =aik bkj.  This assumes that the
values of m, n, and p are known.

EXAMPLE.

 =  
















1 2 1
0 2 5
1 3 1

0 3 2
1 -1 3
1 1 1

















3 - 4 5
7 3 11
4 1 12

















        A       B     C

  c11 = [-1,2,1][0,1,1] = [-1,2,1][0,1,1]T    = (-1)(0) + (2)(1) + (1)(1) = 3 

   c12 = [-1,2,1][3,-1,1] = [-1,2,1][3,-1,1]T    = (-1)(3) + (2)(-1) + (1)(1) = -4

 
 
 

SIZE REQUIREMENT:  In order to take the dot product of the ith row of A with the jth column
of B, they must have the same number of elements.  Thus the number of columns of A must be the
same as the number of rows of B.

A B C
nxp pxn nxm



THE SCALAR PRODUCT IN TERMS OF MATRIX MULTIPLICATION.  The dot product of
two row vectors in R1×n can be given in terms of matrix multiplication.  Let  = [x1,x2,...,xn]  and 

x
= [y1,y2,...,yn] be row vectors in R1×n.  Then y
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        =  =  =  x y x y +  x y  +  ...  +  x y1 1 2 2 n n x yi
i 1

n

i

  

x  y
1xn    nx1

T

If  and  are defined as column vectors, we have
x y

     =  =  =  
x y 1 1 2 2 n nx y + x y  + ... + x y x yi

i 1

n

i

 T

1xn    nx1
x  y 

Using tensor notation, including the Einstein summation convention, we have   = xi yi.
x y

PROPERTIES.  For multiplication properties, we must first be sure that all of the operations are
possible.  Note that unless A and B are square, we can not compute both AB and BA.  Even for
square matrices, AB does not always equal BA (except for 1×1's).  However, we do have:

THEOREM #1.  Let  ,  ,   and  be matrices so that the  multiplications  , A
mxp

B
pxr rxn

C
mxp
A

pxr
B

, ( ),  and ( )  are all possible.  Then B
pxr rxn

C A
mxp

B
pxr rxn

C A
mxp

B
pxr

C
rxn

    A(BC) = (AB)C. matrix multiplication is associative

THEOREM #2.  Let    ,  ,   and  be matrices so that the  multiplications    ,     
mxp
A B

pxn
C
pxn

A
mxp

B
pxn

  and the additions +   and    +  are all possible.  Then A
mxp

C
pxn

B
pxn

C
pxn

A
mxp

B
pxn

A
mxp

C
pxn

    A(B + C) = AB + AC matrix multiplication on the left 
distributes over matric addition 

Now let ,  ,   and  be matrices so that the  multiplications , , and theA
mxp

B
mxp

C
pxn mxp pxn

A B C
pxn

B
mxp

C
pxn

additions + , and +  are all possible.  Then A
mxp

B
mxp

A
mxp

C
pxn

B
mxp

C
pxn

    (A+B)C = AC + BC matrix multiplication on the right 
distributes over matric addition 

THEOREM #3.  Let   and  be matrices so that the matrix multiplications AB, (αA)B, and A
mxp

B
pxn

A(αB) are all possible.  Then   (αA)B = A(αB) = α(AB).
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EXERCISES on Matrix Multiplication

EXERCISE #1.  If possible, multiply  A times B (i.e., find the product AB) if

a) ,      b) ,        c) A = [1,2] ,  B = [1,2,3]1 1 + i
A =

2 2 i

 
  

0 2i
B =

3 1 i

 
  

1 1+ i
A =

1 1 i
 
  

0 2i
B =

3 1 i

 
  

d)  ,   e) ,       f) ,      
0 1 + i

A = 2e 3

1 i i

 
 
 
  

1 + i 3

B = 2 0

0 1 i

 
 
 
  

1 0
A =

2 2 i

 
  

0 2i
B =

3 1 i

 
  

1 1 + i
A =

2 0
 
  

0 2i
B =

3 1 i

 
  

g) ,    h) , 
2 + i

 A = 0

1 i

2



 
 
 
  

2 + 2 i

B = 0

1 2 i

2



 
 
 
  

1 0 0
A = 0 1 0

0 0 1

 
 
 
  

1 0 0
B = 1+ i 1 0

0 0 1

 
 
 
  

EXERCISE #2. .  If posible, compute  A(B+C) (that is, first add  B  to  C  and then add  A  times
this sum) and then AB and BC (that is, multiply AB  and then BC) and then show that you get 
A(B+C) = AB +AC if 

a) , ,  b) ,      1 1 + i
A =

2 2 i

 
  

0 2i
B =

3 1 i

 
  

2 1 + i
C =

1 1 i

 
  

0 1 + i

A = 2e 3

1 i i

 
 
 
  

1 + i 3

B = 2 0

0 1 i

 
 
 
  

2 2 + i

C = 3e 3

3 i i
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Handout #9 MATRIX ALGEBRA FOR SQUARE MATRICES Professor Moseley

If A and B are square, then we can compute both AB and BA.  Unfortunately, these may
not be the same.

THEOREM #1.  If n >1, then there exists A, BR n×n such that AB  BA.  Thus matrix
multiplication is not commutative.  

Thus AB=BA is not an identity.  Can you  give a counter example for n=2? (i.e. an example
where AB  BA.  See Exercise #2.)

DEFINITION #1.  For square matrices, there is a multiplicative identity element.  We define
the n×n matrix I by

 =         One's down the diagonal.  Zero's everywhere else.I
mxn

1 0 0

0 1 0

0 0 1

  

  

  

  

  

  





























THEOREM #2. We have      =        =              A  Knxn   A
nxn

I
nxn

I
nxn

A
nxn

A
nxn

DEFINITION #2.  If there exists B such that AB = I., then B is a right (multiplicative) inverse
of A.    If there exists C such that CA = I., then C is a left (multiplicative) inverse of A.  If  
AB = BA = I, then B is a (multiplicative) inverse of A and we say that A is invertible.  If B is
the only matrix with the property that AB = BA = I, then B is the inverse of A.  If A has a unique
inverse, then we say A is nonsingular and denote its inverse by A-1.

THEOREM #3. Th identity matrix is its own inverse.  

Later (Chapter 9) we show that if A has a right and a left inverse, then it has a unique inverse. 
Hence we prove that A is invertible if and only if it is nonsingular.  Even later, we show that if A
has a right (or left) inverse, then it has a unique inverse.  Thus, even though matrix multiplication
is not commutative, a right inverse is always a left inverse and is indeed the inverse.  Some
matrices have inverses; others do not.  Unfortunately, it is usually not easy to look at a matrix and
determine whether or not it has a (multiplicative) inverse.

THEOREM #4. There exist A, BR n×n such that AI is invertible and B has no inverse.   
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INVERSE OPERATION.  If  B  has a right and left inverse then it is a unique inverse ((i.e.,  B-1

such that B-1B = BB-1 = I) and we can define Right Division  AB-1 and  Left Division  B-1A of A
by B (provided B-1 exists).  But since matrix multiplication is not commutative, we do not know

that these are the same.  Hence   is not well defined since no indication of whether we mean
A
B

left or right division is given.

EXERCISES on Matrix Algebra for Square Matrices

EXERCISE #1.  True or False.
_____ 1. If A and B are square, then we can compute both AB and BA. 
_____ 2. If n >1, then there exists A, BR n×n such that AB  BA. 
_____ 3. Matrix multiplication is not commutative.  
_____ 4. AB=BA is not an identity.
_____ 5.  For square matrices, there is a multiplicative identity element, namely the n×n matrix I,   

              given by  = .nxnI

1 0 0

0 1 0

0 0 1

  

  

  

  

  

  





























_____ 6.    A  Knxn   we have    =        =            A
nxn

I
nxn

I
nxn

A
nxn

A
nxn

_____ 7.  If there exists B such that AB = I., then B is a right (multiplicative) inverse of A. 

_____ 8.   If there exists C such that CA = I., then C is a left (multiplicative) inverse of A.
_____ 9.  If AB = BA = I, then B is a multiplicative inverse of A and we say that A is invertible. 
_____ 10. If B is the only matrix with the property that AB = BA = I, then B is the inverse of A.
_____ 11.  If A has a unique inverse, then we say A is nonsingular and denote its inverse by A-1.
_____ 12. The identity matrix is its own inverse.  
_____ 13. If A has a right and a left inverse, then it has a unique inverse.  
_____ 14. A is invertible if and only if it is nonsingular. 
_____ 15. If A has a right (or left) inverse, then it has a unique inverse. 
_____ 16.  Even though matrix multiplication is not commutative, a right inverse is always a left
                   inverse.
_____ 17.  The inverse of a matrix is unique.
_____ 18.  Some matrices have inverses; others do not.  
_____ 19. It is usually not easy to look at a matrix and determine whether or not it has a 
                  (multiplicative) inverse.
_____ 20.  There exist A, BR n×n such that AI is invertible and B has no inverse
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EXERCISE #2.   Let   α= 2,   A = , and B =  .    Compute the following:
1 i 1 i

1 0
 









1 0
i 1+ i










  = ___________.  AT =____________.   A* = ____________.   αA = ____________. A

 A+B =____________.   AB =_____________. 

EXERCISE #3.   Let   α= 3,   A = , and B =  .    Compute the following:
i 1 i
0 1+ i

 
 
 

1 0
i 1+ i
 
 
 

  = ___________.  AT =____________.   A* = ____________.   αA = ____________. A

 A+B =____________.   AB =_____________. 

EXERCISE #4. Solve  where , , and  .  
2x2 2x1 2x1
A x b

 1 i
A

i 1
 

   

x
x

 y 
 

  
 

 1
b

 i 
 

  
 



EXERCISE #5. Solve  where , , and  
2x2 2x1 2x1
A x b

 1 i
A

i 1
 

   

x
x

 y 
 

  
 

 1
b

 0 
 

  
 



EXERCISE #6 Solve  where , , and  
2x2 2x1 2x1
A x b

 1 i
A

i 0
 

  
 

x
x

 y 
 

  
 

 1
b

 i 
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Handout #10 ADDITIONAL MATRIX PROPERTIES Professor Moseley

Recall that if K is a field and Km×n is the set of all matrices over K, then  the following
properties of matrices are true.

THEOREM #1.  Let Km×n is the set of all matrices over K.  Then for all A, B, C Km×n , we have

 1)  A  + ( B  + C )  =  ( A  + B )  + C associativity of matrix addition
 2)  A  + B  =   B  + A commutativity of matrix addition
 3)  There exists a unique matrix O such that for every matrix A  ε Km×n, A  + O  = A.
 4)  For each A ε Km×n, there exist a unique matrix called  A  such that A  +  (A)  = O.

By using these properties, but without resorting to looking at the components of the matrices we
can prove

THEOREM #2.  Let Km×n is the set of all matrices over K.  Then for all A, B, C Km×n , we have

1)   Ο + A  = A.
2)   (B) + (A + B) = (A + B) + (B) =  A
3)  (A + B) = (A) + (B).      The additive inverse of a sum is the sum of the additive inverses.
4)  If  A + B = A + C, then B = C           This is the cancellation law (for addition).
 

The proofs of properties 1) to 3) in Theorem #2 are easily proved using the standard method for
proving identities in STATEMENT/REASON format.  However none of the reasons rely on
looking at the components of the matrices and hence do not rely directly on the properties of the
underlying field.  Now note that property 4) in Theorem #2 is not an identity.  The conclusion is
an equality, but it is a conditional equality.  Although one could write a somewhat contorted
proof of the concluding equality (B = C) by starting with one side and using the substitution
axiom of equality to achieve the other side, a better proof is achieved by simply adding the same
element to both sides of the given equation. Explanations of why the element to be added exists
(Property 4) in Theorem #4) and why you can add the same element to both sides of an equation
and the result is the same (axiom of equality) are needed.

The properties given in Theorem #1 establish Km×n as a Abelian (or commutative)
group.  Since only these properties are needed to prove Theorem #2, we see that any
mathematical structure having these properties (i.e., any commutative group) also has the
properties given in Theorem #2.  We refer to both the defining properties given in Theorem #1
and the resulting properties given in Theorem #2 as Abelian group properties.

Now recall that if K is a field and Km×n is the set of all matrices over K, then  the
following additional properties of matrices have been proved.

THEOREM #3.  Let Km×n is the set of all matrices over K.  Then for all scalars α ß  K and  
A, B Km×n , we have
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1)  α ( ß A  )  =  ( α ß ) A  (Note that (α ß) indicates multiplication in the field K.)
2)  (α + ß) A   =  α A   +  ß A
3)  α (A  + B )  =  α A  + α B
4)  1 A  = A .

The properties in Theorem #4 below are easy to prove directly for matrices.  However, they can
also be proved by using the properties in Theorem #1 and Theorem #3 (and the properties in
Theorem #2 since these can be proved using only Theorem #1), but without resorting to looking
at the components of the matrices.

THEOREM #4.  Let Km×n is the set of all matrices over K.  Then for all scalars α   K and  
A Km×n , we have

1)   0A  = Ο,
2)   α Ο = Ο,
3)   If α A = Ο, then either α = 0 or A = Ο.

The first two properties are identities and can be proved using the standard method.  Some might
argue that such proofs can become contorted and other methods may be clearer.  The third is
neither an identity nor a conditional equality.  The hypothesis is an equality, but the conclusion
states that there are only two possible reasons why the suppose equality could be true, either of
the possibilities given in 1) or 2) (or both) but no others.  

The properties given in Theorems #1 and #3 establish Km×n as a vector space (see Chapter
2-3)  over K.  Since only properties in Theorems #1 and #3 are needed to prove Theorems #2 and
#4, we see that any mathematical structure having the properties given in Theorems #1 and #3
(i.e., any vector space) also has the properties given in Theorems #2 and 4.  We refer to both the
defining properties given in Theorems #1 and #3 and the resulting properties given in Theorems
#2 and #4 as vector space properties.  We consider additional vector spaces in the next chapter. 
Later, we consider more propertiess of (multiplicative) inverses of square matrices.
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EXERCISES on Additional Matrix Properties

EXERCISE #1.  True or False.
_____ 1.If Km×n is the set of all matrices over K, then for all A, B, C Km×n , we have
              A  + ( B  + C )  =  ( A  + B )  + C.
_____ 2.If Km×n is the set of all matrices over K, then for all A, B, C Km×n , we have
               the associativity of matrix addition.
_____ 3.If Km×n is the set of all matrices over K, then for all A, B Km×n , we have
               A  + B  =   B  + A.
_____ 4.If Km×n is the set of all matrices over K, then for all A, B Km×n , we have
              the commutativity of matrix addition.

_____ 5.If Km×n is the set of all matrices over K, then we have that there exists a unique matrix O 
              such that for every matrix A  ε Km×n, A  + O  = A.
_____ 6.If Km×n is the set of all matrices over K, then  we have that for each A ε Km×n, there exist 
              a unique matrix called  A  such that A  +  (A)  = O.
_____ 7. If Km×n is the set of all matrices over K, then  we have  Ο + A  = A.
_____ 8. If Km×n is the set of all matrices over K, then  (B) + (A + B) = (A + B) + (B) =  A
_____ 9. If Km×n is the set of all matrices over K, then for all A, B, C Km×n , we have 
               (A + B) = (A) + (B).
_____ 10. If Km×n is the set of all matrices over K, then for all A, B, C Km×n , we have that the 
                additive inverse of a sum is the sum of the additive inverses.
_____ 11. If Km×n is the set of all matrices over K, then for all A, B, C Km×n , we have that if  
                A + B = A + C, then B = C  
_____ 12. If Km×n is the set of all matrices over K, then A + B = A + C, then B = C is called the 
                 cancellation law for addition. 
_____ 13. Many of the properties of matrices are identies and can be proved using the 
                STATEMENT/REASON format.  
_____ 14.  Some of the properties of matrices do not rely on looking at the components of the 
                  matrices.
_____ 15. Some of the properties of matrices do not rely directly on the properties of the 
                underlying field.  
_____ 16. Some of the properties of matrices are not identities.
_____ 17. Some of the properties of matrices are conditional equalities. 
_____ 18. Some of the properties of matrices can be proved by starting with one side and using 
                the substitution axiom of equality to achieve the other side.
_____ 19. Sometimes a better proof of a matrix property can be obtained by simply adding the 
                same element to both sides of a given equation. 
_____ 20. Sometimes a proofs of a matrix properties can be obtained by using properties of 
                 equality. 
_____ 21. A group is an abstract algebraic structure.
_____ 22. An Abelian group is an abstract algebraic structure.
_____ 23. A commutative group is an abstract algebraic structure.
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_____ 24.  The set of all matrices over a field K is a group.
_____ 25.  The set of all matrices over a field K is an abelian group.
_____ 26.  The set of all matrices over a field K is a commutative group.
_____ 27.  The set of all matrices over a field K is a group.
_____ 28.  If Km×n is the set of all matrices over K, then for all scalars α, ß  K and A Km×n , we 
                have  α ( ß A  )  =  ( α ß ) A
_____ 29.  If Km×n is the set of all matrices over K, then for all scalars α, ß  K and A,B Km×n , 
                 we have   (α + ß) A   =  α A   +  ß A
_____ 30.  If Km×n is the set of all matrices over K, then for all scalars α  K and A,B Km×n , we 
                have  α (A  + B )  =  α A  + α B
_____ 31.  If Km×n is the set of all matrices over K, then for all A Km×n , we have  1 A  = A .
_____ 32.  If Km×n is the set of all matrices over K, then for all A Km×n , we have  0A  = Ο.
_____ 33.  If Km×n is the set of all matrices over K, then for all all scalars α  K  we have 
                  α Ο = Ο.
_____ 34.  If Km×n is the set of all matrices over K, then for all scalars α  K and  A Km×n , we    
                 have that if α A = Ο, then either α = 0 or A = Ο.
_____ 35.  The set of all matrices over K is a vector space. 
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