Application of Derivatives to Optimization Problems

Facts: Let $f(x)$ be a differentiable function on an interval I.
(1) (Where to seek optimal solutions?) Any local extrema must occur at a critical point.
(2) (How does $f^{\prime}(x)$ play a role?) The sign of $f^{\prime}(x)$ can predict whether $f(x)$ is increasing or decreasing.

Strategy to find optimal solutions: Firstly we determine the critical points, and the sign of $f^{\prime}(x)$ in the subintervals determined by the critical points. Then interpret the sign of $f^{\prime}(x)$ to discuss whether an optimal solution occurs at a given critical point.

Example 1 A three side fence is to be built next to a straight section of river, which forms the forth side of a rectangular region. The enclosed area is to equal $1800 \mathrm{ft}^{2}$. Find the minimum perimeter and the dimensions of the corresponding enclosure.

Solution: Let the length of the two sides of the rectangular region be x and y, where y represents the length of the side parallel to the river bank. Then as $x y=1800, y=\frac{1800}{x}$. The perimeter of the region is a function of x :

$$
f(x)=2 x+y=2 x+\frac{1800}{x}
$$

As x is a length, $x>0$. Therefore, the domain of $f(x)$ is $(0, \infty)$.
Compute $f^{\prime}(x)=2-\frac{1800}{x^{2}}$. Set $f^{\prime}(x)=0$ to get $x= \pm 30$. Only $x=30$ is in the domain. Moreover, $x=30$ partitions the domain $(0, \infty)$ into two subintervals: $(0,30)$ and $(30, \infty)$. As $f^{\prime}(1)<0$ and $f^{\prime}(40)>0, f(x)$ is decreasing in $(0,30)$ and increasing in $(30, \infty)$. The shape of graph of $y=f(x)$ suggests that $f(x)$ has an absolute minimum at $x=30$. Thus the minimum perimeter and the corresponding dimensions are, respectively,

$$
f(30)=2 \cdot 30+\frac{1800}{30}=120, x=30, y=\frac{1800}{30}=60
$$

Example 2 Find the point on the curve $y=x^{2}$ closest to the point $Q=(0,1)$.
Solution: Let P be a point of the curve $y=x^{2}$. Then $P=\left(x, x^{2}\right)$. The distance between P and Q is a function of x :

$$
f(x)=\sqrt{(x-0)^{2}+\left(x^{2}-1\right)^{2}}=\sqrt{x^{2}+x^{4}-2 x^{2}+1}=\sqrt{x^{4}-x^{2}+1}=\left(x^{4}-x^{2}+1\right)^{\frac{1}{2}}
$$

As $x^{4}-x^{2}+1>0$ for all x, the domain of $f(x)$ is $(-\infty, \infty)$. Compute $f^{\prime}(x)$ by using the chain rule

$$
f^{\prime}(x)=\frac{1}{2} \frac{4 x^{3}-2 x}{\sqrt{x^{4}-x^{2}+1}}=\frac{x\left(2 x^{2}-1\right)}{\sqrt{x^{4}-x^{2}+1}} .
$$

Set $f^{\prime}(x)=0$. Then the numerator must equal zero. Thus the critical numbers are

$$
x=0, x=\frac{1}{\sqrt{2}}, x=-\frac{1}{\sqrt{2}} .
$$

These points partition the domain $(-\infty, \infty)$ into four intervals:

$$
\left(-\infty,-\frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}}, 0\right),\left(0, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, \infty\right) .
$$

Compute $f^{\prime}(-10)<0, f^{\prime}\left(-\frac{1}{2}\right)>0, f^{\prime}\left(\frac{1}{2}\right)<0$ and $f^{\prime}(10)>0$, (note that the denominator is always positive). Therefore, $f(x)$ is increasing in $\left(-\frac{1}{\sqrt{2}}, 0\right) \cup\left(\frac{1}{\sqrt{2}}, \infty\right)$, and decreasing in $\left(-\infty,-\frac{1}{\sqrt{2}}\right) \cup\left(0, \frac{1}{\sqrt{2}}\right)$.

From the shape of the graph $y=f(x), f(x)$ has local minimum at $x= \pm \frac{1}{\sqrt{2}}$, and at least one of them gives the absolute minimum. Compute

$$
f\left(\frac{1}{\sqrt{2}}\right)=f\left(-\frac{1}{\sqrt{2}}\right)=\sqrt{\frac{3}{4}} .
$$

Therefore, there are two points $\left(\pm \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ which are on $y=x^{2}$ and are closest to $(0,1)$.
Example 3 Determine two real numbers with difference 20 and minimum possible product.
Solution: Let x and y denote these two real numbers with $x \leq y$. Then $y=20+x$. Thus we want to minimize

$$
f(x)=x y=x(20+x)=20 x+x^{2},
$$

in $(-\infty, \infty)$. Note that $f^{\prime}(x)=2 x+20$, and so $x=-10$ is the only critical number. As $f^{\prime}(x)<0$ when $x<-10$ and $f^{\prime}(x)>0$ when $x>-10$. Therefore $f(-10)$ is the only local minimum value of $f(x)$ in $(-\infty, \infty)$, and so it is also the absolute minimum value of $f(x)$ in its domain. Hence $x=-10$ and $y=10$ are the two numbers we want.

