Write the equation of a plane

Example(1): Write an equation of a plane through $P(1,0,-1)$ with normal vector $\mathbf{n}=(2,2,-1)$.
Solution: The equation is

$$
2(x-1)+2(y-0)+(-1)(z+1)=0 .
$$

Example(2): Write an equation of a plane through $P(5,1,4)$ and parallel to the plane with equation $x+y-2 z=0$.

Solution: Thus the two planes has parallel normal vectors, and so we can use $\mathbf{n}=(1,1,-2)$ as a normal vector of both planes. The answer is

$$
(x-5)+(y-1)+(-2)(z-4)=0 .
$$

Example(3): Write an equation of a plane through $A(1,0,-1) B(3,3,2)$ and $C(4,5,-1)$.
Solution: Let $\mathbf{a}=\overline{A B}=(2,3,3)$ and $\mathbf{b}=\overline{A C}=(3,5,0)$. Then as $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b}, it can serve as a normal vector of the plane. Note that

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 3 & 3 \\
3 & 5 & 0
\end{array}\right|=(3-0,-(0-9), 10-9)=(3,9,1) .
$$

Thus the equation of the plane is

$$
3(x-1)+9(y-0)+(z+1)=0 .
$$

Example(4): Write an equation of a plane through $A(1,-2,3)$ and containing the line $L: x=$ $3-2 t, y=2+4 t, z=5-4 t$.

Solution: Set $t=0$ and $t=1$, we obtained two more points $B(3,2,5)$ and $C(1,6,1)$ on the plane and so this problem becomes the same type of problem as Example(3) above. Let a $=\overline{A B}=$ $(2,4,2)=2(1,2,1)$ and $\mathbf{b}=\overline{A C}=(0,8,-2)=2(0,4,-1)$. Then as $\mathbf{n}=\frac{1}{2} \mathbf{a} \times \frac{1}{2} \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b}, it can serve as a normal vector of the plane. Note that

$$
\mathbf{n}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 1 \\
0 & 4 & -1
\end{array}\right|=(-2-4,-(-1-0), 4-0)=(-6,1,4) .
$$

Thus the equation of the plane is

$$
-6(x-1)+(y+2)+4(z-3)=0 .
$$

