Determine the relationship of two lines

Example: Given two lines

$$
\begin{array}{ll}
L_{1}: & x-2=\frac{y+1}{2}=\frac{z-3}{3} \\
L_{2}: & \frac{x-5}{3}=\frac{y-1}{2}=\frac{z-4}{1}
\end{array}
$$

Determine if they are parallel, skew or intersecting.
Solution: The lines L_{1} and L_{2} are parallel to $\mathbf{v}_{1}=(1,2,3)$ and $\mathbf{v}_{2}=(3,2,1)$. Since \mathbf{v}_{1} cannot be written as a scalar product of \mathbf{v}_{2}, the two lines are not parallel.

Now we try to solve the system of equations, obtained from the symmetric equations of the two lines:

$$
\begin{cases}2 x-4 & =y+1 \\ 3 x-6 & =z-3 \\ 2 x-10 & =3 y-3 \\ x-5 & =3 z-12\end{cases}
$$

Solving the first three equations to get $x=2, y=-1$ and $z=3$ (subtract the third from the first side by side to get $6=-2 y+2$, and so $y=-1$. Substitute $y=-1$ in the first to get $x=2$, and so from the second, $z=3$).

If $x=2, y=-1$ and $z=3$ also satisfy the fourth equation, then L_{1} and L_{2} intersect at $P(2,-1,3)$; otherwise the two lines are skew. In this example, $x=2, y=-1$ and $z=3$ do satisfy the fourth equation, and so L_{1} and L_{2} intersect at $P(2,-1,3)$.

