Compute the equations of a line in space

Example(1): Write parametric and symmetric equations of a line passing through $P(2,3,-4)$ and parallel to $\mathbf{v}=(1,-1,2)$.
Solution: The parametric and symmetric equations are, respectively,

$$
\left\{\begin{array}{l}
x=2+t \\
y=3-t \\
z=-4+2 t
\end{array} \quad \text { and } \frac{x-2}{1}=\frac{y-3}{-1}=\frac{z+4}{2}\right.
$$

Example(2): Write parametric and symmetric equations of a line passing through $P(2,5,-7)$ and $Q(4,3,8)$.

Solution: Note that the line is parallel to the vector $\mathbf{v}=\overline{P Q}=(2,-2,15)$. Thus the parametric and symmetric equations are, respectively,

$$
\left\{\begin{array}{l}
x=2+2 t \\
y=5-2 t \\
z=-7+15 t
\end{array} \quad \text { and } \frac{x-2}{2}=\frac{y-5}{-2}=\frac{z+7}{15}\right.
$$

Example(3): Write parametric and symmetric equations of a line passing through $P(2,3,-4)$ and perpendicular to the plane $x+2 y+3 z=4$.
Solution: Thus the line if parallel to a normal vector $\mathbf{n}=(1,2,3)$ of the plane, and so the parametric and symmetric equations are, respectively,

$$
\left\{\begin{array}{l}
x=2+t \\
y=3+2 t \\
z=-4+3 t
\end{array} \quad \text { and } \frac{x-2}{1}=\frac{y-3}{2}=\frac{z+4}{3}\right.
$$

