Compute the cross (vector) product of two vectors

Example: Given $\mathbf{a}=\mathbf{i}-\mathbf{j}+3 \mathbf{k}$ and $\mathbf{b}=-2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$, compute $\mathbf{a} \times \mathbf{b}$.
Solution: $\mathbf{a} \times \mathbf{b}$ is equal to

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & 3 \\
-2 & 3 & 1
\end{array}\right|=(-1-9,-(1+6), 3-2)=(-10,-7,1)
$$

Find unit vectors perpendicular to two given vectors

Example: Given $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$, find two unit vectors perpendicular to both \mathbf{a} and \mathbf{b}.
Solution: Note that $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b}. First compute

$$
\mathbf{a} \times \mathbf{b}=(10-9,-(5-6), 3-4)=(1,1,-1) .
$$

Thus the two desired unit vectors are

$$
\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right) \text { and }\left(\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) .
$$

Compute areas

Example: Find the area of the triangle with vertices $P(1,1,0), Q(1,0,1)$ and $R(0,1,1)$.
Solution: Set $\mathbf{a}=\overline{P Q}=(0,-1,1)$ and $\mathbf{b}=\overline{P R}=(-1,0,1)$. Thus the area is

$$
\frac{|\mathbf{a} \times \mathbf{b}|}{2}=\frac{\mid(-1,-1,-1)}{\mid} 2=\frac{\sqrt{3}}{2} .
$$

Compute volumes

Example: Find the volume of the parallelepiped with adjacent edges $\overline{O P}, \overline{O Q}$ and $\overline{O R}$, where $P(1,1,0), Q(1,0,1)$ and $R(0,1,1)$ are three points. Also find the volume of the pyramid with vertices O, P, Q and R.
Solution: Set $\mathbf{a}=\overline{O P}=(1,1,0), \mathbf{b}=\overline{O Q}=(1,0,1)$ and $\mathbf{c}=\overline{O R}=(0,1,1)$. Then the volume of the parallelepiped is $|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$. First compute

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|=0-(0+1+1)=-2 .
$$

Thus the volume of the parallelepiped is 2 .
The volume of the pyramid is one sixth of the volume of the parallelepiped, and so it $\frac{1}{3}$.

