Compute integrals using Green’s Theorem

Useful facts: For a region R on the plane enclosed by a piecewise smooth curve C, where the positive
direction of C' is the counterclockwise direction.

(i) Green’s Theorem states that if P(x,y) and Q(z,y) have continuous first order of derivatives, then
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where the integral is taken along the positive direction of C.

(ii) The area of the region R is
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(iii) If n denotes the outer unit normal vector of the closed curve C, and F is a vector field, then the
flux of the vector field F across the curve C is

j{F-nds.
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Example (1) Given P = 2% + y?,Q = —2xy, C is the boundary of the triangle bounded by z = 0,
y=0and z +y =1, Compute §, Pdzx + Qdy.

(iv) With Green’s Theorem,

Solution: Let R denote the region bounded by C. Apply Green’s Theorem to get
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Example (2) Given P = y?,Q = 2z — 3y, C is the 22 + y* = 9, Compute §, Pdx + Qdy.

Solution: Let R denote the region bounded by C. Apply Green’s Theorem to get
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Example (3) Given P = y/(1+ 22),Q = tan' z, C is the 2* + y* = 1, Compute fc Pdx + Qdy.

Solution: Let R denote the region bounded by C. Apply Green’s Theorem to get

¢ pissqay= [ [ oaa-o
e} R

Example (4) Find the area of the region between the graphs y = 22 and y = 2°.



Solution: We write this curve C' as the union of the reverse curve of C; and the positive direction of
Cy, where Cy:x=t,y=t>with0<t<1land Cy:x =ty =1t with 0 <t < 1. Therefore,
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Example (5) Find the area of the region R which is between the z-axis and one arch of the cycloid

with parametric equations = a(t — sint) and y = a(1 — cost).

Solution: We write this curve C as the union of the reverse curve of C; and the positive direction of
Cy, where Cy : x = a(t —sint),y = a(1 —cost) with 0 < ¢ < 27 and Cy : x = ¢,y = 0 with 0 < ¢ < 27a.
Therefore,
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Example (6) Use Green’s Theorem to compute the work W = fc F - Tds, where F = (—2y, 3z) and
C has equation 22/9 + y?/4 = 1.

Solution: Let R denote the region enclosed by C'. Note that @, — P, = 3 +2 = 5, and the area of
the ellipse with equation 22/a? + y2/b? = 1 is mab. Therefore, by Green’s Theorem,
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Example (7) Use Green’s Theorem to compute the out flux ¢ = fC F - nds, where F = (2z,3y) and
C has equation 22/9 + y?/4 = 1.

Solution: Compute to get V-F = 243 = 5. With the same integration idea in Example (6), we have
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