Compute integrals using Green's Theorem

Useful facts: For a region R on the plane enclosed by a piecewise smooth curve C, where the positive direction of C is the counterclockwise direction.
(i) Green's Theorem states that if $P(x, y)$ and $Q(x, y)$ have continuous first order of derivatives, then

$$
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A,
$$

where the integral is taken along the positive direction of C.
(ii) The area of the region R is

$$
A=\frac{1}{2} \oint_{C}(-y) d x+x d y=-\oint y d x=\oint x d y
$$

(iii) If \mathbf{n} denotes the outer unit normal vector of the closed curve C, and \mathbf{F} is a vector field, then the flux of the vector field F across the curve C is

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s .
$$

(iv) With Green's Theorem,

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R} \nabla \cdot \mathbf{F} d A
$$

Example (1) Given $P=x^{2}+y^{2}, Q=-2 x y, C$ is the boundary of the triangle bounded by $x=0$, $y=0$ and $x+y=1$, Compute $\oint_{C} P d x+Q d y$.
Solution: Let R denote the region bounded by C. Apply Green's Theorem to get

$$
\oint_{C} P d x+Q d y=\iint_{R}(-2 y-2 y) d A=-4 \int_{0}^{1} \int_{0}^{1-y} y d x d y=\frac{-2}{3} .
$$

Example (2) Given $P=y^{2}, Q=2 x-3 y, C$ is the $x^{2}+y^{2}=9$, Compute $\oint_{C} P d x+Q d y$.
Solution: Let R denote the region bounded by C. Apply Green's Theorem to get

$$
\oint_{C} P d x+Q d y=\iint_{R}(2-2 y) d A=\int_{0}^{2 \pi} \int_{0}^{3}(2-2 r \sin \theta) r d r d \theta=18 \pi .
$$

Example (3) Given $P=y /\left(1+x^{2}\right), Q=\tan ^{-1} x, C$ is the $x^{4}+y^{4}=1$, Compute $\oint_{C} P d x+Q d y$.
Solution: Let R denote the region bounded by C. Apply Green's Theorem to get

$$
\oint_{C} P d x+Q d y=\iint_{R} 0 d A=0 .
$$

Example (4) Find the area of the region between the graphs $y=x^{2}$ and $y=x^{3}$.

Solution: We write this curve C as the union of the reverse curve of C_{1} and the positive direction of C_{2}, where $C_{1}: x=t, y=t^{2}$ with $0 \leq t \leq 1$ and $C_{2}: x=t, y=t^{3}$ with $0 \leq t \leq 1$. Therefore,

$$
A=\oint_{C} x d y=-\int_{0}^{1} 2 t^{2} d t+\int_{0}^{1} 3 t^{3} d t=-\frac{2}{3}+\frac{3}{4}=\frac{5}{12} .
$$

Example (5) Find the area of the region R which is between the x-axis and one arch of the cycloid with parametric equations $x=a(t-\sin t)$ and $y=a(1-\cos t)$.

Solution: We write this curve C as the union of the reverse curve of C_{1} and the positive direction of C_{2}, where $C_{1}: x=a(t-\sin t), y=a(1-\cos t)$ with $0 \leq t \leq 2 \pi$ and $C_{2}: x=t, y=0$ with $0 \leq t \leq 2 \pi a$. Therefore,

$$
A=\oint_{C} x d y=-\int_{0}^{2 \pi}\left(a^{2}(t-\sin t)(\sin t) d t+\int_{0}^{2 \pi a} 0 d t=3 \pi a^{2} .\right.
$$

Example (6) Use Green's Theorem to compute the work $W=\oint_{C} \mathbf{F} \cdot \mathbf{T} d s$, where $\mathbf{F}=(-2 y, 3 x)$ and C has equation $x^{2} / 9+y^{2} / 4=1$.

Solution: Let R denote the region enclosed by C. Note that $Q_{x}-P_{y}=3+2=5$, and the area of the ellipse with equation $x^{2} / a^{2}+y^{2} / b^{2}=1$ is $\pi a b$. Therefore, by Green's Theorem,

$$
\oint_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{R} 5 d A=5 \pi(3)(2)=30 \pi .
$$

Example (7) Use Green's Theorem to compute the out flux $\phi=\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$, where $\mathbf{F}=(2 x, 3 y)$ and C has equation $x^{2} / 9+y^{2} / 4=1$.

Solution: Compute to get $\nabla \cdot \mathbf{F}=2+3=5$. With the same integration idea in Example (6), we have

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R} 5 d A=5 \pi(3)(2)=30 \pi .
$$

