Compute the line integrals in conservative fields and search for potential functions

Useful facts: Let $\mathbf{F}=(P, Q, R)$ denote a vector field. \mathbf{F} is conservative if there exists a function f such that $\nabla f=\mathbf{F}$. In this case f is a potential function of \mathbf{F}.
(1) The line integral of $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$ is independent of path in the region D if and only if $\mathbf{F}=\nabla f$ in D for some function f.
(2) Suppose that a vector function $\mathbf{F}=(P(x, y), Q(x, y))$ has continuous second order of derivatives in a region D. Then there is a function f in D such that $\nabla f=\mathbf{F}$ if and only if $P_{y}=Q_{x}$.
(3) Suppose $\mathbf{F}=(P(x, y), Q(x, y))$ and $P_{y}=Q_{x}$. Then the following steps will lead to the discovery of a potential function $f(x, y)$. (Another way to find a potential can be found in Example (3) below).
(Step 1) $f(x, y)=\int P(x, y) d x=f_{1}(x, y)+c(y)$, where $c(y)$ is an unknown function of y (viewed as constant for x).
(Step 2) Use the fact that $f_{y}=Q$ to get

$$
Q=\frac{\partial f_{1}}{\partial y}+c^{\prime}(y)
$$

which results in a differential equation.
(Step 3) Solve this equation for $c(y)$, and substitute it back in Step 1 to get $f(x, y)$.

Example (1) Given $\mathbf{F}=\left(4 x^{2} y-5 y^{4}, x^{3}-20 x y^{3}\right)$, check if this is a conservative vector field, and if yes, find a potential function.

Solution: Here $P=4 x^{2} y-5 y^{4}$ and $Q=x^{3}-20 x y^{3}$. First compute $P_{y}=4 x^{2}-20 y^{3}$, and $Q_{x}=3 x^{2}-20 y^{3}$. As $P_{y} \neq Q_{x}$. This is not conservative.

Example (2) Given $\mathbf{F}=\left(1+y e^{x y}, 2 y+x e^{x y}\right)$, check if this is a conservative vector field, and if yes, find a potential function.

Solution: Here $P=1+y e^{x y}$ and $Q=2 y+x e^{x y}$. First compute $P_{y}=e^{x y}+x y e^{x y}$, and $Q_{x}=e^{x y}+x y e^{x y}$. As $P_{y}=Q_{x}$, this is a conservative field.

To find a potential f, we first compute

$$
f(x, y)=\int\left(1+y e^{x y}\right) d x=x+e^{x y}+c(y)
$$

Then, set $2 y+x e^{x y}=f_{y}=0+x e^{x y}+c^{\prime}(y)$, to get $c^{\prime}(y)=2 y$. Therefore, $c(y)=y^{2}$. Substitute $c(y)=y^{2}$ to $f(x, y)$ above to get

$$
f(x, y)==x+e^{x y}+y^{2} .
$$

Example (3) Given $\mathbf{F}=\left(2 x y^{2}+3 x^{2}, 2 x^{2} y+4 y^{3}\right)$, check if this is a conservative vector field, and if yes, find a potential function.

Solution: Here $P=2 x y^{2}+3 x^{2}$ and $Q=2 x^{2} y+4 y^{3}$. First compute $P_{y}=4 x y$, and $Q_{x}=4 x y$. As $P_{y}=Q_{x}$, this is a conservative field.

To find a potential function f, we note that the integral $\int_{C} P d x+Q d y$ is independent of the path. Therefore, we note that one of the potential functions $f(x, y)$ satisfies $f(0,0)=0$, and so for fixed unknown $\left(x_{0}, y_{0}\right)$, we choose C to be the straight line from $(0,0)$ to $\left(x_{0}, y_{0}\right)$. Thus the parametric equations of C are $x=t x_{0}$ and $y=t y_{0}$ with $0 \leq t \leq 1$. Thus as $f(0,0)=0$,

$$
\begin{aligned}
f\left(x_{0}, y_{0}\right) & =f\left(x_{0}, y_{0}\right)-f(0,0)=\int_{C} P d x+Q d y \\
& =\int_{0}^{1}\left(2 x_{0} y_{0}^{2} t^{3}+3 x_{0}^{2} t^{2}\right) x_{0} d t+\left(2 x_{0}^{2} y_{0} t^{3}+4 y_{0}^{3} t^{3}\right) y_{0} d t \\
& =x_{0}^{2} y_{0}^{2}+x_{0}^{3}+y_{0}^{4} .
\end{aligned}
$$

Therefore, $f(x, y)=x^{2} y^{2}+x^{3}+y^{4}$.
Example (4) Show that the involved vector field is conservative and for some curve C on the $x y$-plane, evaluate the line integral

$$
\int_{(0,0)}^{(1,3)}(2 x-3 y) d x+(2 y-3 x) d y
$$

Solution: Here $P=2 x-3 y$ and $Q=2 y-3 x$. Note that $P_{y}=-3=Q_{x}$. Therefore, the vector field is conservative. We shall choose an easy to compute path C.

Let $C_{1}: 0 \leq x \leq 1$ and $y=0$; and $C_{2}: 0 \leq y \leq 3$ and $x=1$. Then $C=C_{1}+C_{2}$ and so

$$
\int_{(0,0)}^{(1,3)}(2 x-3 y) d x+(2 y-3 x) d y=\int_{0}^{1} 2 x d x+\int_{0}^{3}(2 y-3) d y=(1-0)+(0-0)=1 .
$$

Example (5) Given a conservative vector field $\mathbf{F}=(2 x-y-z, 2 y-x, 2 z-x)$, find a potential function.

Solution: Here $P=2 x-y-z, Q=2 y-x$ and $R=2 z-x$. We can apply the method in Example (3) to find a potential function.

One of the potential functions $f(x, y, z)$ satisfies $f(0,0,0)=0$, and so for fixed unknown $\left(x_{0}, y_{0}, z_{0}\right)$, we choose C to be the straight line from $(0,0,0)$ to $\left(x_{0}, y_{0}, z_{0}\right)$. Thus the parametric equations of C are $x=t x_{0}, y=t y_{0}$ and $z=t z_{0}$ with $0 \leq t \leq 1$. Thus as $f(0,0,0)=0$,

$$
\begin{aligned}
f\left(x_{0}, y_{0}, z_{0}\right) & =f\left(x_{0}, y_{0}, z_{0}\right)-f(0,0,0) \\
& =\int_{0}^{1}\left(2 x_{0}-y_{0}-z^{0}\right) t x_{0} d t+\left(2 y_{0}-x_{0}\right) t y_{0} d t+\left(2 z_{0}-x_{0}\right) t z_{0} d t \\
& =x_{0}^{2}-x_{0} y_{0}-x_{0} z_{0}+y_{0}^{2}+z_{0}^{2}
\end{aligned}
$$

Therefore, $f(x, y, z)=x^{2}-x y-x z+y^{2}+z^{2}$.

