Compute the line integrals

Useful facts: Let $(x(t), y(t), z(t)), a \leq t \leq b$ denote a parametric equations of a spacial curve C. Suppose that the function $f(x, y, z)$ is continuous on curve C.
(1) The line integral of f with respect to arc length along the curve C is

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left.\left.\left[x^{\prime}(t)\right]^{2}+y^{\prime}(t)\right]^{2}+z^{\prime}(t)\right]^{2}} d t .
$$

(2) If C is a wire and the density function of this aire is $\delta(x, y, z)$, then the mass of the wire is

$$
m=\int_{C} \delta(x, y, z) d s
$$

and the centroid $(\bar{x}, \bar{y}, \bar{z})$ is

$$
\bar{x}=\frac{1}{m} \int_{C} x \delta(x, y, z) d s, \bar{y}=\frac{1}{m} \int_{C} y \delta(x, y, z) d s, \bar{z}=\frac{1}{m} \int_{C} z \delta(x, y, z) d s
$$

(3) The line integral of f with respect to \mathbf{x}, and to y, to z, along the curve C are, respectively

$$
\begin{aligned}
\int_{C} f(x, y, z) d x & =\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t . \\
\int_{C} f(x, y, z) d y & =\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t . \\
\int_{C} f(x, y, z) d z & =\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t .
\end{aligned}
$$

(4) Reverse of the direction of the curve.

$$
\int_{-C} f(x, y, z) d s(d x, d y, \text { or } d z, \text { repsectively })=-\int_{C} f(x, y, z) d s(d x, d y, \text { or } d z, \text { repsectively })
$$

(5) Suppose that $\mathbf{F}=(P, Q, R)$ is a continuous vector function, and \mathbf{T} is the unit tangent vector to the smooth curve C. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} P d x+Q d y+R d z
$$

(6) The Fundamental Theorem of Calculus: If for a continuous function $f(x, y, z), \mathbf{F}=\nabla f$, and if the curve C is from a point $\left(x_{1}, y_{1}, z_{1}\right)$ (when $\left.t=a\right)$), to a point $\left(x_{2}, y_{2}, z_{2}\right)$ (when $\left.t=b\right)$), then f is a potential function of \mathbf{F}, and

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{a}^{b}\left[\frac{\partial f}{\partial x} x^{\prime}(t)+\frac{\partial f}{\partial y} y^{\prime}(t)+\frac{\partial f}{\partial z} z^{\prime}(t)\right] d t=\int_{a}^{b} \frac{d f}{d t} d t=f\left(x_{2}, y_{2}, z_{2}\right)-f\left(x_{1}, y_{1}, z_{1}\right)
$$

Example (1) Give $f(x, y)=2 x-y$, and the curve C with parametric equations $x=\sin t, y=\cos t$, $0 \leq t \leq \pi / 2$. Evaluate the line integrals.

$$
\int_{C} f(x, y) d s, \int_{C} f(x, y) d x, \int_{C} f(x, y) d y
$$

Solution: Compute to get $x^{\prime}(t)=\cos t$ and $y^{\prime}(t)=$ sint. Thus $d s=\sqrt{\cos ^{2} t+(-\sin t)^{2}}=1$.

$$
\begin{aligned}
\int_{C} f(x, y) d s & =\int_{0}^{\pi / 2}(2 \sin t-\cos t) d t=1 \\
\int_{C} f(x, y) d x & =\int_{0}^{\pi / 2}(2 \sin t-\cos t) \cos t d t=\int_{0}^{\pi / 2}\left(2 \sin t \cos t-\frac{1+\cos 2 t}{2}\right) d t=\frac{4-\pi}{4} \\
\int_{C} f(x, y) d y & =\int_{0}^{\pi / 2}(2 \sin t-\cos t)(-\sin t) d t=\int_{0}^{\pi / 2}\left((-2) \frac{1-\cos 2 t}{2}+\sin t \cos t\right) d t=\frac{1-\pi}{2}
\end{aligned}
$$

Example (2) Give $P(x, y)=y \sqrt{x} Q(x, y)=x \sqrt{y}$, and the curve C is the part of the graph of $y^{2}=x^{3}$ from $(1,1)$ to $(4,8)$. Evaluate the line integral

$$
\int_{C} P d x+Q d y
$$

Solution: The first and important step is to find a parametric form of C. Set $t=x$. Then C can have parametric equations $x=t^{2}$ and $y=t^{3}$ with $1 \leq t \leq 2$. Note that $d x=2 x d t$ and $d y=3 t^{2} d t$. Thus

$$
\int_{C} P d x+Q d y=\int_{1}^{2} 2 t^{5} d t+\int_{1}^{2} 3 t^{5} d t=5 \int_{1}^{2} t^{5} d t=\left[\frac{5}{6} t^{6}\right]_{1}^{2}=\frac{105}{2}
$$

Example (3) Give $\mathbf{F}=(y z, x z, x y)$, and the curve C is the straight line segment from $(2,-1,3)$ to $(4,2,-1)$. Evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

Solution 1: The first and important step is to find a parametric form of C. For a straight line from a point $\left(x_{1}, y_{1}, z_{1}\right)$ to $\left(x_{2}, y_{2}, z_{2}\right)$ can always have the parametric equations $x=x_{1}+t\left(x_{2}-x_{1}\right)$, $y=y_{1}+t\left(y_{2}-y_{1}\right)$, and $z=z_{1}+t\left(z_{2}-z_{1}\right)$, with $0 \leq t \leq 1$. In this case, $x=2+2 t, y=-1+3 t$ and $z=3-4 t$. Note that $d x=2 d t, d y=3 d t$ and $d z=-4 d t$. Thus

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{0}^{1}[2(-1+3 t)(3-4 t)+3(2+2 t)(3-4 t)-4(2+2 t)(-1+3 t)] d t=-2 .
$$

Solution 2: (Need the help of potential functions). Note that if $f(x, y, z)=x y z$, then $\nabla f=\mathbf{F}$. Therefore, by the Fundamental Theorem of Calculus (on the curves)

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=f(4,2,-1)-f(2,-1,3)=-2 .
$$

Example (4) Give $\mathbf{F}=\left(2 x+3 y, 3 x+2 y, 3 z^{2}\right)$, and the curve C is the path from $(0,0,0)$ to $(4,2,3)$. that consists of three line segments parallel to the x-axis, y-axis, and z-axis in that order. Evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

Solution 1: The first and important step is to find a parametric form of C. We can break the curve C into three pieces $C_{1}: 0 \leq x \leq 4, y=0$ and $z=0 ; C_{2}: 0 \leq y \leq 2, x=4$ and $z=0$; and $C_{3}: 0 \leq z \leq 3$, $x=4$ and $y=2$. Note that on $C_{1}, d y=d z=0$, on $C_{2}, d x=d z=0$ and on $C_{3}, d x=d y=0$. Thus

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C_{1}}+\int_{C} 2+\int_{C_{3}}=\int_{0}^{4} 2 x d x+\int_{0}^{2}(12+2 y) d y+\int_{0}^{3} 3 z^{2} d z=71
$$

Solution 2: Note that if $f(x, y, z)=x^{2}+3 x y+y^{2}+z^{3}$, then $\nabla f=\mathbf{F}$. Therefore, by the Fundamental Theorem of Calculus (on the curves)

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=f(4,2,3)-f(0,0,0)=71
$$

