Determine if three points are coline

Example(1): Are the points $P(6,7,8), Q(3,3,3)$ and $R(12,15,18)$ are on the same line?
Solution: Compute the vector $\mathbf{a}=\overline{Q P}=(3,4,5)$ and $\mathbf{b}=\overline{Q R}=(9,12,15)$. Note that $\mathbf{b}=3 \mathbf{a}$. Thus the two vectors are parallel, and so the points are on the same line.
Example(2): Are the points $P(0,-2,4), Q(1,-3,5)$ and $R(4,-5,8)$ are on the same line?
Solution: Compute the vector $\mathbf{a}=\overline{P Q}=(1,-1,1)$ and $\mathbf{b}=\overline{P R}=(4,-3,4)$. Note that \mathbf{b} cannot be a scalar product of \mathbf{a}. Thus the two vectors are not parallel, and so the points are not on the same line.

Compute the direction cosines of a vector

Example: Find the direction cosines of a vector represented by $\overline{P Q}$, where $P(2,-3,5)$ and $Q(1,0,-1)$ are two points.
Solution: Compute $\mathbf{a}=\overline{P Q}=(-1,3,-6)$. Then $|\mathbf{a}|=\sqrt{1+9+36}=\sqrt{46}$. Thus

$$
\cos \alpha=\frac{-1}{\sqrt{46}}, \cos \beta=\frac{3}{\sqrt{46}}, \cos \gamma=\frac{-6}{\sqrt{46}}
$$

Verify the triangle inequality

Example: Given two vectors \mathbf{a} and \mathbf{b}. Prove that $|\mathbf{a}+\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}|$.
Solution: Since $|\cos \theta| \leq 1$, we have $|\mathbf{a} \cdot \mathbf{b}| \leq|\mathbf{a}| \cdot|\mathbf{b}|$. Thus

$$
\begin{aligned}
(|\mathbf{a}+\mathbf{b}|)^{2} & =(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}+\mathbf{b})=(\mathbf{a})^{2}+2 \mathbf{a} \cdot \mathbf{b}+(\mathbf{b})^{2} \\
& \leq|\mathbf{a}|^{2}+2|\mathbf{a}| \cdot|\mathbf{b}|+|\mathbf{b}|^{2}=(|\mathbf{a}|+|\mathbf{b}|)^{2}
\end{aligned}
$$

Take square root both sides to get the desired inequality.

