Compute integrals in spherical coordinates

Useful facts: With spherical coordinates, we have

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

Suppose that $f(x, y, z)$ is continuous on a spacial region T, and T in spherical coordinates can be described as:

$$
\rho_{1}(\phi, \theta) \leq \rho \leq \rho_{2}(\phi, \theta), \phi_{1} \leq \phi \leq \phi_{2}, \text { and } \theta_{1} \leq \theta \leq \theta_{2}
$$

Then

$$
\iiint_{T} f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{1}} \int_{\phi_{1}}^{\phi_{2}} \int_{\rho_{1}(\phi, \theta)}^{\rho_{2}(\phi, \theta)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

Example (1) Find the volume of the solid bounded above by the surface $\rho=2 a \sin \phi$, where $a>0$ is a real number.

Solution: As θ is not shown up in the equation, θ can take all the values in an interval of length 2π. Which means that the solid can be obtained by rotating the curve $\rho=2 a \sin \phi$ in the $\rho \phi$-plane (viewed as polar coordinates) about the line throught the origin and perpendicular to the $\rho \phi$-plane.

Thus we can use $[-\pi, \pi]$ for the interval of θ, and so $-\pi \leq \theta \leq \pi$. Note that $0 \leq \phi \leq \pi$. For fixed θ and ϕ, ρ changes in the interval $[0,2 a \sin \phi]$. Hence the volume is

$$
\begin{aligned}
\int_{-\pi}^{\pi} \int_{0}^{\pi} \int_{0}^{2 a \sin \phi} \rho^{2} \sin \phi d \rho d \phi d \theta & =2 \pi \int_{0}^{\pi} \frac{(2 a \sin \phi)^{3}}{3} \sin \phi d \phi=\frac{16 a^{3} \pi}{3} \int_{0}^{\pi} \frac{1-2 \cos (2 \phi)+\cos ^{2} 2 \phi}{4} d \phi \\
& =\frac{4 a^{3} \pi}{3}\left[\phi-\sin (2 \phi)+\frac{\phi}{2}-\frac{\sin 4 \phi}{8}\right]_{0}^{\pi}=\frac{4 a^{3} \pi}{3} \frac{3 \pi}{2}=2 a^{3} \pi^{2}
\end{aligned}
$$

Example (2) Find the volume of the solid bounded above by the surface $\rho=1+\cos \phi$.
Solution: As θ is not shown up in the equation, θ can take all the values in an interval of length 2π. Which means that the solid can be obtained by rotating the curve $\rho=1+\cos \phi$ in the $\rho \phi$-plane (viewed as polar coordinates) about the line throught the origin and perpendicular to the $\rho \phi$-plane.

Thus we can use $[-\pi, \pi]$ for the interval of θ, and so $-\pi \leq \theta \leq \pi$. Note that $0 \leq \phi \leq \pi$. For fixed θ and ϕ, ρ changes in the interval $[0,1+\cos \phi]$. Hence the volume is

$$
\int_{-\pi}^{\pi} \int_{0}^{\pi} \int_{0}^{1+\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \int_{0}^{\pi} \frac{(1+\cos \phi)^{3}}{3} \sin \phi d \phi=\frac{2 \pi}{3}\left[-\frac{(1+\cos \phi)^{4}}{4}\right]_{0}^{\pi}=\frac{8 \pi}{3}
$$

