## Compute iterated triple integrals

Useful facts: Suppose that $f(x, y, z)$ is continuous on a spacial region $T$, and $T$ is $z$-simple: each line parallel to the $z$-axis intersects $T$ (if not empty) in a a single line segment. An example of such region is

$$
z_{1}(x, y) \leq z \leq z_{2}(x, y), \text { and }(x, y) \text { in } R
$$

where $R$ is the vertical projection of $T$ into the plane $z=0$. Then

$$
\iiint_{T} f(x, y, z) d V=\iint_{R}\left(\int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) d z\right) d A
$$

Example (1) Compute the value of the triple integral $\iiint_{T} f(x, y, z) d V$, where $f(x, y, z)=$ $x y \sin z$, and $T$ is the cube $0 \leq x \leq \pi, 0 \leq y \leq \pi$ and $0 \leq z \leq \pi$.

Solution: Then $R$ is the region $0 \leq x \leq \pi$ and $0 \leq y \leq \pi$ on $z=0$. Therefore,
$\iiint_{T} x y \sin z d V=\iint_{R}\left(\int_{0}^{\pi} x y \sin z d z\right) d A=\int_{0}^{\pi} x d x \int_{0}^{\pi} y d x \int_{0}^{\pi} \sin z d z=\frac{\pi^{2}}{2} \frac{\pi^{2}}{2}(2)=\frac{\pi^{4}}{2}$.
Example (2) Compute the value of the triple integral $\iiint_{T} f(x, y, z) d V$, where $f(x, y, z)=$ $2 x+3 y$, and $T$ is the tetrahedron bounded by the coordinate planes and the first octant part of the plane with equation $2 x+3 y+z=6$.

Solution: Then $R$ is the region on $z=0$ bounded by $x=0, y=0$ and $2 x+3 y=6$, which can be described as $0 \leq x \leq 3$ and $0 \leq y \leq 2-\frac{2 x}{3}$. Note that here $z_{1}(x, y)=0$ and $z_{2}(x, y)=6-2 x-3 y$. Therefore,

$$
\begin{aligned}
\iiint_{T}(2 x+3 y) d V & =\iint_{R}\left(\int_{0}^{6-2 x-3 y}(2 x+3 y) d z\right) d A=\int_{0}^{3} \int_{0}^{2-\frac{2 x}{3}} \int_{0}^{6-2 x-3 y}(2 x+3 y) d z d y d x \\
& =\int_{0}^{3} \int_{0}^{2-\frac{2 x}{3}}\left(12 x+18 y-4 x^{2}-12 x y-9 y^{2}\right) d y d x=18
\end{aligned}
$$

Example (3) Compute the value of the triple integral $\iint_{T} f(x, y, z) d V$, where $f(x, y, z)=$ $x+y$, and $T$ is the region between the surfaces $z=2-x^{2}$ and $z=x^{2}$ from $0 \leq y \leq 3$.

Solution: The two surfaces $z=2-x^{2}$ and $z=x^{2}$ intersect in two lines $x=1$ and $x=-1$ (solve the equations $z=2-x^{2}$ and $z=x^{2}$ for $x$ to find it out). Then $R$ is the region on $z=0$ bounded by the lines $x=-1, x=1, y=0$ and $y=3$. Note that here $z_{1}(x, y)=x^{2}$ and $z_{2}(x, y)=2-x^{2}$. Therefore,

$$
\iiint_{T}(x+y) d V=\iint_{R}\left(\int_{x^{2}}^{2-x^{2}}(x+y) d z\right) d A=\int_{0}^{3} \int_{-1}^{1} \int_{x^{2}}^{2-x^{2}}(x+y) d z d x d y
$$

Example (4) Find the volume of the solid bounded by these surfaces $z=x^{2}+y^{2}, z=0, x=$ $0, y=0$ and $x+y=1$.

Solution: The region $R$ on the $x y$-plane is bounded by $x=0, y=0$ and $x+y=1$. The surfaces $z=x^{2}+y^{2}$ and $z=0$ tops and bottoms the solid. Therefore,

$$
\text { Volume }=\iint_{R}\left(\int_{0}^{x^{2}+y^{2}} d z\right) d A=\int_{0}^{1} \int_{0}^{1-x}\left(x^{2}+y^{2}\right) d y d x=\frac{1}{6}
$$

## Compute the mass and the centroid of a solid

Useful facts: Suppose that $\delta(x, y, z)$ denotes the density function of a solid $T$. Let $m$ denote the mass of $T$, and $\bar{x}, \bar{y}, \bar{z})$ denote the coordinates the centroid of $T$. and $I_{x}, I_{y}$ and $I_{z}$ denote the moments of $T$ around the $x$-axis, the $y$-axis and the $z$-axis, respectively. Then

$$
\begin{aligned}
m & =\iiint_{T} \delta(x, y, z) d V \\
\bar{x} & =\frac{1}{m} \iiint_{T} x \delta(x, y, z) d V \\
\bar{y} & =\frac{1}{m} \iiint_{T} y \delta(x, y, z) d V \\
\bar{z} & =\frac{1}{m} \iiint_{T} z \delta(x, y, z) d V \\
I_{x} & =\iiint_{T}\left(y^{2}+z^{2}\right) \delta(x, y, z) d V \\
I_{y} & =\iiint_{T}\left(x^{2}+z^{2}\right) \delta(x, y, z) d V \\
I_{z} & =\iiint_{T}\left(y^{2}+x^{2}\right) \delta(x, y, z) d V
\end{aligned}
$$

Example (1) Find the centroid of the solid $T$ bounded by $z=x^{2}, y+z=4, y=0$ and $z=0$, given the density function $\delta \equiv 1$.

Solution: As the density is 1 , this is the same as to find the volume. View the $y$-axis as the vertical axis. Then $T$ lies between $y=0$ and $y=4-z$. The region $R$ on the $x z$-plane is bounded by $z=x^{2}$ and $z=4$ (obtained by substituting $y=0$ in $y+z=4$ ). Therefore, the mass is

$$
\begin{aligned}
m & =\iint_{R}\left(\int_{0}^{4-z} d y\right) d A=\int_{-2}^{2} \int_{x^{2}}^{4}(4-z) d z d x=\int_{-2}^{2}\left[4 z-\frac{z^{2}}{2}\right]_{x^{2}}^{4} d x \\
& =\int_{-2}^{2}\left(8-4 x^{2}+\frac{x^{4}}{2}\right) d x=\left[8 x-\frac{4 x^{3}}{3}+\frac{x^{5}}{10}\right]_{-2}^{2}=64\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{10}\right)=\frac{256}{15}
\end{aligned}
$$

The coordinates of the centroid is
$\bar{x}=\frac{15}{256} \int_{-2}^{2} \int_{x^{2}}^{4} \int_{0}^{4-z} x d y d z d x=\frac{15}{256} \int_{-2}^{2} \int_{0}^{x^{2}}(4-z) x d z d x=\int_{-2}^{2}\left(8 x-4 x^{3}+\frac{x^{5}}{2}\right) d x=0$

$$
\begin{aligned}
\bar{y} & =\frac{15}{256} \int_{-2}^{2} \int_{x^{2}}^{4} \int_{0}^{4-z} y d y d z d x=\frac{15}{256} \int_{-2}^{2} \int_{x^{2}}^{4} \frac{(4-z)^{2}}{2} d z d x=\frac{15}{256} \int_{-2}^{2} \frac{1}{2} \int_{x^{2}}^{4}\left(16-8 z+z^{2}\right) d z d x \\
& =\frac{15}{512} \int_{-2}^{2}\left[16 z-4 z^{2}+\frac{z^{3}}{3}\right]_{x^{2}}^{4} d x=\frac{15}{512} \int_{-2}^{2}\left[\frac{64}{3}-16 x^{2}+4 x^{4}-\frac{x^{6}}{3}\right] d x \\
& =\frac{15}{512}\left[\frac{64 x}{3}-\frac{16 x^{3}}{3}+\frac{4 x^{5}}{5}-\frac{x^{7}}{213}\right]_{-2}^{2}=\frac{15}{512}\left[\frac{256}{3}-\frac{256}{3}+\frac{256}{5}-\frac{256}{21}\right]=\frac{15}{2}\left(\frac{1}{5}-\frac{1}{7}\right)=\frac{8}{7} \\
& =\frac{15}{256} \int_{-2}^{2}\left[\frac{32}{3}-2 x^{4}+\frac{x^{6}}{3}\right] d x=\frac{15}{256} \int_{-2}^{2}\left[\frac{32 x}{3}-\frac{2 x^{5}}{5}+\frac{x^{7}}{21}\right]_{-2}^{4} \int_{x^{2}}^{4-z} z d y d z d x=\frac{15}{256} \int_{-2}^{2} \int_{x^{2}}^{4}\left(4 z-z^{2}\right) d z d x=\frac{15}{256} \int_{-2}^{2}\left[2 z-\frac{z^{3}}{3}\right]_{x^{2}}^{4} d x \\
& =\frac{15}{256}\left[\frac{128}{3}-\frac{128}{5}+\frac{256}{21}\right]=\frac{12}{7} .
\end{aligned}
$$

