Compute double integrals in polar coordinates

Useful facts: Suppose that $f(x, y)$ is continuous on a region R in the plane $z=0$.
(1) If the region R is bounded by $\alpha \leq \theta \leq \beta$ and $a \leq r \leq b$, then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{b e t a} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta .
$$

(2) If the region R is bounded by $\alpha \leq \theta \leq \beta$ and $r_{1}(\theta) \leq r \leq r_{2}(\theta)$ (called a radially simple region), then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{b e t a} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Example (1) Find the volume of a sphere of radius a by double integration.
Solution: We can view that the center of the sphere is at the origin $(0,0,0)$, and so the equation of the sphere is $x^{2}+y^{2}+z^{2}=a^{2}$. We then can compute the volume of the upper half part of the sphere and multiply our answer by 2 .

$$
V=2 \int_{-a}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{\sqrt{a^{2}-y^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

To compute this integral, we observe that the polar coordinates may be a better mechanism in this case. With polar coordinates, the function $z=\sqrt{a^{2}-x^{2}-y^{2}}$ becomes $z=\sqrt{a^{2}-r^{2}}$, over the region $-\pi \leq \theta \pi$ and $0 \leq r \leq a$. Therefore, using polar coordinates, we have (using $u=a^{2}-r^{2}$ and $2 r d r=-d u$ to start with)

$$
V=2 \int_{-\pi}^{\pi} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r d r d \theta=\int_{-\pi}^{\pi} \int_{0}^{a^{2}} u^{1 / 2} d u d \theta=2 \pi \frac{2 a^{3}}{3}=\frac{4 \pi a^{3}}{3} .
$$

Example (2) Find the area of the region R bounded by one loop of $r=2 \cos 2 \theta$.
Solution: In the interval $[-\pi, \pi]$ of $\theta, \cos 2 \theta=0$ exactly at $\theta= \pm \frac{\pi}{4}$ and $\theta= \pm \frac{3 \pi}{4}$. For one loop, this is the case when $\alpha=-\frac{\pi}{4}$ and $\beta=\frac{\pi}{4}$, while $r_{1}=0$ and $r_{2}=2 \cos 2 \theta$. Use the fact that $\sin \frac{ \pm \pi}{2}= \pm 1$ to get

$$
A=\iint_{R} d A=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \int_{0}^{2 \cos 2 \theta} r d r d \theta=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 2 \cos ^{2} 2 \theta d \theta=\frac{\pi}{2} .
$$

Example (3) Find the area of the region R inside the smaller loop of $r=1-2 \sin \theta$.
Solution: In the interval $[-\pi, \pi]$ of $\theta, \sin \theta=\frac{1}{2}$ exactly at $\theta= \pm \frac{\pi}{4}$ and $\theta= \pm \frac{3 \pi}{4}$. For the smaller loop, this is the case when $\alpha=\frac{\pi}{4}$ and $\beta=\frac{3 \pi}{4}$, while $r_{1}=0$ and $r_{2}=1-2 \sin \theta$. Thus

$$
A=\iint_{R} d A=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \int_{0}^{1-2 \sin \theta} r d r d \theta=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{(1-2 \sin \theta)^{2}}{2} d \theta=\frac{2 \pi-3 \sqrt{3}}{2} .
$$

Example (4) Find the volume of the solid that lies below the surface $z=x^{2}+y^{2}$ over the region R bounded by $r=2 \cos \theta$.

Solution: In the interval $[-\pi, \pi]$ of $\theta, \cos \theta=0$ exactly at $\theta= \pm \frac{\pi}{2}$. This is the case when $\alpha=-\frac{\pi}{2}$ and $\beta=\frac{\pi}{2}$, while $r_{1}=0$ and $r_{2}=2 \cos \theta$. Thus

$$
V=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} r^{3} d r d \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(2 \cos \theta)^{4}}{4} d \theta=4 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\cos 2 \theta)^{2}}{4} \theta=\frac{3 \pi}{2}
$$

Example (5) Evaluate the double integral

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \frac{1}{\sqrt{4-x^{2}-y^{2}}} d y d x
$$

Solution: Change to polar coordinates. Then

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \frac{1}{\sqrt{4-x^{2}-y^{2}}} d y d x=\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \frac{1}{4-r^{2}} r d r d \theta=\frac{\pi}{2} \int_{0}^{1} \frac{1}{4-r^{2}} r d r=\frac{\pi(2-\sqrt{3})}{2}
$$

Example (6) Find the volume of the solid that lies below the surface $z=1+x$ and above the plane $z=0$ over the region R bounded by $r=1+\cos \theta$.
Solution: In the interval $[-\pi, \pi]$ of $\theta, \cos \theta=-1$ exactly at $\theta= \pm \pi$. This is the case when $\alpha=-\pi$ and $\beta=\pi$, while $r_{1}=0$ and $r_{2}=1+\cos \theta$. Thus

$$
\begin{aligned}
V & =\int_{-\pi}^{\pi} \int_{0}^{1+\cos \theta}(1+r \cos \theta) r d r d \theta=\int_{-\pi}^{\pi}\left[\frac{(1+\cos \theta)^{2}}{2}+\frac{(1+\cos \theta)^{3}}{3} \cos \theta\right] d \theta \\
& =\frac{1}{6} \int_{-\pi}^{\pi}\left(3+9 \cos ^{2} \theta+2 \cos ^{4} \theta\right) d \theta=\frac{11}{4} \pi
\end{aligned}
$$

Example (7) Find the volume of the solid bounded by the paraboloid $z=12-2 x^{2}-y^{2}$ and $z=x^{2}+2 y^{2}$.
Solution: The intersection of the two surfaces, when projected down to the $z=0$ plane, is the common solution of both $z=12-2 x^{2}-y^{2}$ and $z=x^{2}+2 y^{2}$, which is a curve with equation $3 x^{2}+3 y^{2}=14$, or $x^{2}+y^{2}=4$ on the plane $z=0$. In terms of polar coordinates, the region R bounded by this curve (a circle centered at the origin with radius 2) is also bounded by $-\pi \leq \theta \leq \pi$ and $0 \leq r \leq 2$. The top surface is $z=12-2 x^{2}-y^{2}$ and the bottom one is $z=x^{2}+2 y^{2}$. Thus

$$
\begin{aligned}
V & =\int_{-\pi}^{\pi} \int_{0}^{2}\left(12-2 x^{2}-y^{2}-x^{2}-2 y^{2}\right) r d r d \theta=3 \int_{-\pi}^{\pi} \int_{0}^{2}\left(4-x^{2}-y^{2}\right) r d r d \theta \\
& =3 \int_{-\pi}^{\pi} \int_{0}^{2}\left(4-r^{2}\right) r d r d \theta=6 \pi\left[2 r^{2}-\frac{r^{4}}{4}\right]_{0}^{2}=24 \pi
\end{aligned}
$$

