
Compute double integrals in polar coordinates

Useful facts: Suppose that f(x, y) is continuous on a region R in the plane z = 0.
(1) If the region R is bounded by α ≤ θ ≤ β and a ≤ r ≤ b, then∫ ∫

R
f(x, y)dA =

∫ beta

α

∫ b

a
f(r cos θ, r sin θ)rdrdθ.

(2) If the region R is bounded by α ≤ θ ≤ β and r1(θ) ≤ r ≤ r2(θ) (called a radially simple
region), then ∫ ∫

R
f(x, y)dA =

∫ beta

α

∫ r2(θ)

r1(θ)
f(r cos θ, r sin θ)rdrdθ.

Example (1) Find the volume of a sphere of radius a by double integration.

Solution: We can view that the center of the sphere is at the origin (0, 0, 0), and so the equation
of the sphere is x2 + y2 + z2 = a2. We then can compute the volume of the upper half part of
the sphere and multiply our answer by 2.

V = 2
∫ a

−a

∫ √a2−y2

−
√

a2−y2

√
a2 − x2 − y2dxdy.

To compute this integral, we observe that the polar coordinates may be a better mechanism
in this case. With polar coordinates, the function z =

√
a2 − x2 − y2 becomes z =

√
a2 − r2,

over the region −π ≤ θπ and 0 ≤ r ≤ a. Therefore, using polar coordinates, we have (using
u = a2 − r2 and 2rdr = −du to start with)

V = 2
∫ π

−π

∫ a

0

√
a2 − r2rdrdθ =

∫ π

−π

∫ a2

0
u1/2dudθ = 2π

2a3

3
=

4πa3

3
.

Example (2) Find the area of the region R bounded by one loop of r = 2 cos 2θ.

Solution: In the interval [−π, π] of θ, cos 2θ = 0 exactly at θ = ±π
4 and θ = ±3π

4 . For one
loop, this is the case when α = −π

4 and β = π
4 , while r1 = 0 and r2 = 2 cos 2θ. Use the fact

that sin ±π
2 = ±1 to get

A =
∫ ∫

R
dA =

∫ π
4

−π
4

∫ 2 cos 2θ

0
rdrdθ =

∫ π
4

−π
4

2 cos2 2θdθ =
π

2
.

Example (3) Find the area of the region R inside the smaller loop of r = 1− 2 sin θ.

Solution: In the interval [−π, π] of θ, sin θ = 1
2 exactly at θ = ±π

4 and θ = ±3π
4 . For the

smaller loop, this is the case when α = π
4 and β = 3π

4 , while r1 = 0 and r2 = 1− 2 sin θ. Thus

A =
∫ ∫

R
dA =

∫ 3π
4

π
4

∫ 1−2 sin θ

0
rdrdθ =

∫ 3π
4

π
4

(1− 2 sin θ)2

2
dθ =

2π − 3
√

3
2

.

Example (4) Find the volume of the solid that lies below the surface z = x2 + y2 over the
region R bounded by r = 2 cos θ.



Solution: In the interval [−π, π] of θ, cos θ = 0 exactly at θ = ±π
2 . This is the case when

α = −π
2 and β = π

2 , while r1 = 0 and r2 = 2 cos θ. Thus

V =
∫ π

2

−π
2

∫ 2 cos θ

0
r3drdθ =

∫ π
2

−π
2

(2 cos θ)4

4
dθ = 4

∫ π
2

−π
2

1 + cos 2θ)2

4
θ =

3π

2
.

Example (5) Evaluate the double integral

∫ 1

0

∫ √
1−x2

0

1√
4− x2 − y2

dydx.

Solution: Change to polar coordinates. Then∫ 1

0

∫ √
1−x2

0

1√
4− x2 − y2

dydx =
∫ π

2

0

∫ 1

0

1
4− r2

rdrdθ =
π

2

∫ 1

0

1
4− r2

rdr =
π(2−

√
3)

2
.

Example (6) Find the volume of the solid that lies below the surface z = 1 + x and above the
plane z = 0 over the region R bounded by r = 1 + cos θ.

Solution: In the interval [−π, π] of θ, cos θ = −1 exactly at θ = ±π. This is the case when
α = −π and β = π, while r1 = 0 and r2 = 1 + cos θ. Thus

V =
∫ π

−π

∫ 1+cos θ

0
(1 + r cos θ)rdrdθ =

∫ π

−π

[
(1 + cos θ)2

2
+

(1 + cos θ)3

3
cos θ

]
dθ

=
1
6

∫ π

−π
(3 + 9 cos2 θ + 2 cos4 θ)dθ =

11
4

π.

Example (7) Find the volume of the solid bounded by the paraboloid z = 12− 2x2 − y2 and
z = x2 + 2y2.

Solution: The intersection of the two surfaces , when projected down to the z = 0 plane,
is the common solution of both z = 12 − 2x2 − y2 and z = x2 + 2y2, which is a curve with
equation 3x2 + 3y2 = 14, or x2 + y2 = 4 on the plane z = 0. In terms of polar coordinates, the
region R bounded by this curve (a circle centered at the origin with radius 2) is also bounded
by −π ≤ θ ≤ π and 0 ≤ r ≤ 2. The top surface is z = 12 − 2x2 − y2 and the bottom one is
z = x2 + 2y2. Thus

V =
∫ π

−π

∫ 2

0
(12− 2x2 − y2 − x2 − 2y2)rdrdθ = 3

∫ π

−π

∫ 2

0
(4− x2 − y2)rdrdθ

= 3
∫ π

−π

∫ 2

0
(4− r2)rdrdθ = 6π

[
2r2 − r4

4

]2

0

= 24π.


