Compute area and volume by evaluating double integrals

Useful facts: Suppose that $f(x, y)$ is continuous on a region R in the plane $z=0$.
(1) The area A of the region R is

$$
A=\iint_{R} d A .
$$

(2) The volume V of the solid that lies below the surface $z=f(x, y)$ and above the region is (assuming that this integral exists)

$$
V=\iint_{R} f(x, y) d A
$$

(3) The volume V of the solid that lies below the surface $z=z_{\text {top }}=z_{2}(x, y)$ and above the surface $z=z_{\text {bottom }}=z_{1}(x, y)$ is (assuming that this integral exists)

$$
V=\iint_{R}\left[z_{\mathrm{top}}-z_{\mathrm{bottom}}\right] d A=\iint_{R}\left[z_{2}(x, y)-z_{1}(x, y)\right] d A .
$$

Example (1) Find the area of the region R on the plane $z=0$ bounded by the curves $y=2 x+3$ and $y=6 x-x^{2}$ by evaluate a double integral.

Solution: View this region as a vertically simple one. Then solve the system of equations $y=2 x+3$ and $y=6 x-x^{2}$ for x to get the x-bounds.

Substitute $y=2 x+3$ in $y=6 x-x^{2}$ to get $x^{2}-4 x+3=0$, and so $x=1$ and $x=3$. Therefore, the x-bounds are $a=1$ and $b=3$. Thus

$$
A=\int_{1}^{3} \int_{2 x+3}^{6 x-x^{2}} d y d x=\int_{1}^{3}\left(4 x-x^{2}-3\right) d x=\frac{4}{3} .
$$

Example (2) Find the volume of the solid that is below the surface $z=3+\cos x+\cos y$ over the region R on the plane $z=0$ bounded by the curves $x=0, x=\pi, y=0$ and $y=\pi$ by evaluate a double integral.

Solution: Set up the double integral and evaluate it:

$$
V=\int_{0}^{\pi} \int_{0}^{\pi}(3+\cos x+\cos y) d x d y=\int_{0}^{\pi}(3 \pi+\pi \cos x) d x=3 \pi^{2}
$$

Example (3) Find the volume of the solid that is below the surface $z=3 x+2 y$ over the region R on the plane $z=0$ bounded by the curves $x=0, y=0$ and $x+2 y=4$ by evaluate a double integral.

Solution: Set up the double integral and evaluate it:

$$
\left.V=\int_{0}^{2} \int_{0}^{4-2 y}(3 x+2 y) d x d y=\int_{0}^{2}\left[\frac{3}{2} x^{2}+2 x y\right]_{0}^{4-2 y} d x=\int_{0}^{2}(24-16 y)+2 y^{2}\right) d y=\frac{64}{3} .
$$

Example (4) Find the volume of the solid bounded by the planes $y=0, z=0, y=2 x$ and $4 x+2 y+z=8$.

Solution: Study the solid to understand that it is above $z=0$ and below $z=8-4 x-2 y$, over the region R on the $z=0$ plane which is bounded by the lines $4 x+2 y=8(z=0), y=2 x$ and $y=0$.

$$
V=\int_{0}^{2} \int_{\frac{y}{2}}^{\frac{4-y}{2}}(8-4 x-2 y) d x d y=\int_{0}^{2}\left(9-8 y+2 y^{2}\right) d y=\frac{16}{3} .
$$

Example (5) Find the volume of the first octant part of the solid bounded by the cylinders $x^{2}+y^{2}=1$ and $y^{2}+z^{2}=1$.
Solution: Study the solid to understand that it is above $z=0$ and below $z=\sqrt{1-y^{2}}$, over the region R on the $z=0$ plane which is bounded by the lines $x=0, y=0$ and $x^{2}+y^{2}=1$. Note that in $R, x \geq 0$ and $y \geq 0$. Thus the integral is obtained below.

$$
V=\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \sqrt{1-y^{2}} d x d y=\int_{0}^{1}\left(1-y^{2}\right) d y=\frac{2}{3}
$$

Example (6) Find the volume of a sphere of radius a by double integration.
Solution: We can view that the center of the sphere is at the origin $(0,0,0)$, and so the equation of the sphere is $x^{2}+y^{2}+z^{2}=a^{2}$. We then can compute the volume of the upper half part of the sphere and multiply our answer by 2 (or the portion in the first octant and multiply the answer by 8).

$$
V=8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} d x d y=\frac{4}{3} \pi a^{3}
$$

(How do we compute this integral? We can read the next Tip: Compute double integrals in polar coordinates).

Example (7) Find the volume of the solid bounded below by the plane $z=0$ and above by the paraboloid $z=25-x^{2}-y^{2}$.
Solution: Study the solid to understand that it is over the region R on the $z=0$ plane which is bounded by the circle $x^{2}+y^{2}=25$.

$$
V=8 \int_{0}^{5} \int_{0}^{\sqrt{25-y^{2}}}\left(25-x^{2}-y^{2}\right) d x d y=\frac{625}{2} \pi
$$

Example (8) Find the volume removed when a vertical square hole of edge length r is cut directly through the center of a long horizontal solid cylinder of radius r.

Solution: Set the coordinate system so that the center of the vertical square hole is the y-axis and the center of the long horizontal solid cylinder is the x-axis. Then the equation of the cylinder is $y^{2}+z^{2}=r^{2}$, and the intersection of the removed square based solid and the plane $z=0$ is a square region R whose vertices are $\left(\pm \frac{r}{2}, \pm \frac{r}{2}\right)$. Use the fact that $\sin ^{-1} \frac{1}{2}=\frac{\pi}{6}$ to get

$$
V=8 \int_{0}^{\frac{r}{2}} \int_{0}^{\frac{r}{2}} \sqrt{r^{2}-y^{2}} d x d y=8\left(\frac{r}{2}\right)\left[\frac{y}{2} \sqrt{r^{2}-y^{2}}+\frac{r^{2}}{2} \sin ^{-1} \frac{y}{r}\right]_{0}^{\frac{r}{2}}=r^{3}\left(\frac{\sqrt{3}}{2}+\frac{\pi}{3}\right) .
$$

