Evaluate double integrals over general regions

Useful facts: Suppose that f(z,y) is continuous on a region R.
(1) If R can be described by a < x < b,y1(x) <y < yo(x), (that is, R is vertically simple),

then
//fa:ydA / (/yl(x) y)dy)da:.

(2) If R can be described by ¢ <y < d,z1(y) < = < 22(y), (that is, R is horizontally

simple), then
[ [ swaa= [ (/“(y)f - y)dm)d

Example (1) Evaluate
L vy
/ / (x + y)dxdy.
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Solution: Convert the double integral into iterated integrals:
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Example (2) Evaluate the integral of the function f(z,y) = 2% over the region R, which
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is bounded by the parabola y = 2 — 22 and the line y = —4.

Solution: Note that the two curves y = 2 — 22 and y = —4 intersect at (v/6,—4) and
(—v/6, —4) (this can be obtained by solving the system of equations y = 2 — 22 and y = —4
simultaneously).

Then use it to set up the double integral and evaluate it:
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Example (3) Evaluate the integral of the function f = sin x over the region R, which

(,
is bounded by the z-axis, and the curve y = cosz, —5 <

Solution: As the z bounds are explicitly given, it may be easier to view the region as a
vertically simple one.

Set up the double integral and evaluate it:
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Example (4) Evaluate the integral
1,
/ / e”* dxdy.
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Solution: Direct computation encounters difficulty. Note that the region R is bounded by
the lines y = x, x = 1 and y = 0. Change the order of integration to compute this integral

(use a Calculus I substitution u = 22 in the third equality).
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Example (5) Evaluate the integral
™ T Q1
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Solution: Direct computation encounters difficulty. Note that the region R is bounded by

the lines y = x, x = 7 and y = 0. Change the order of integration to compute this integral

(note that cos0 = 1 and cosm = —1 in the last step).
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Example (6) Evaluate the integral
1 r1 1
——dzdy.
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Solution: Direct computation encounters difficulty. Note that the region R is bounded by

the lines y = z, x = 1 and y = 0. Change the order of integration to compute this integral

(use u = 2? in the third equality and note that tan™'(1) = T and tan™'(0) = 0).
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