Evaluate double integrals over general regions

Useful facts: Suppose that $f(x, y)$ is continuous on a region R.
(1) If R can be described by $a \leq x \leq b, y_{1}(x) \leq y \leq y_{2}(x)$, (that is, R is vertically simple), then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left(\int_{y_{1}(x)}^{y_{2}(x)} f(x, y) d y\right) d x
$$

(2) If R can be described by $c \leq y \leq d, x_{1}(y) \leq x \leq x_{2}(y)$, (that is, R is horizontally simple), then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d}\left(\int_{x_{1}(y)}^{x_{2}(y)} f(x, y) d x\right) d y
$$

Example (1) Evaluate

$$
\int_{0}^{1} \int_{y}^{\sqrt{y}}(x+y) d x d y
$$

Solution: Convert the double integral into iterated integrals:
$\int_{0}^{1} \int_{y}^{\sqrt{y}}(x+y) d x d y=\int_{0}^{1}\left(\frac{x^{2}}{2}+y x\right)_{y}^{\sqrt{y}} d y=\int_{0}^{1}\left(\frac{y}{2}+y^{3 / 2}-\frac{y^{2}}{2}-y^{2}\right) d y=\left[\frac{y^{2}}{4}+\frac{2 y^{5 / 2}}{5}-\frac{y^{3}}{2}\right]_{0}^{1}=\frac{3}{20}$.
Example (2) Evaluate the integral of the function $f(x, y)=x^{2}$ over the region R, which is bounded by the parabola $y=2-x^{2}$ and the line $y=-4$.

Solution: Note that the two curves $y=2-x^{2}$ and $y=-4$ intersect at $(\sqrt{6},-4)$ and $(-\sqrt{6},-4)$ (this can be obtained by solving the system of equations $y=2-x^{2}$ and $y=-4$ simultaneously).

Then use it to set up the double integral and evaluate it:

$$
\int_{-\sqrt{6}}^{\sqrt{6}} \int_{-4}^{2-x^{2}} x^{2} d x d y=\int_{-\sqrt{6}}^{\sqrt{6}}\left(6 x^{2}-x^{4}\right) d x=\left[2 x^{3}-\frac{x^{5}}{5}\right]_{-\sqrt{6}}^{\sqrt{6}}=\frac{48}{5} \sqrt{6}
$$

Example (3) Evaluate the integral of the function $f(x, y)=\sin x$ over the region R, which is bounded by the x-axis, and the curve $y=\cos x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

Solution: As the x bounds are explicitly given, it may be easier to view the region as a vertically simple one.

Set up the double integral and evaluate it:

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\cos x} \sin x d y d x=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \cos x d x=\left[\frac{\sin ^{2} x}{2}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=0
$$

Example (4) Evaluate the integral

$$
\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y
$$

Solution: Direct computation encounters difficulty. Note that the region R is bounded by the lines $y=x, x=1$ and $y=0$. Change the order of integration to compute this integral (use a Calculus I substitution $u=x^{2}$ in the third equality).

$$
\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y=\int_{0}^{1} \int_{0}^{x} e^{-x^{2}} d y d x=\int_{0}^{1} e^{-x^{2}} x d x=\frac{1}{2} \int_{0}^{1} e^{-u} d u=-\left.\frac{1}{2} e^{-u}\right|_{0} ^{1}=\frac{e-1}{2 e} .
$$

Example (5) Evaluate the integral

$$
\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x
$$

Solution: Direct computation encounters difficulty. Note that the region R is bounded by the lines $y=x, x=\pi$ and $y=0$. Change the order of integration to compute this integral (note that $\cos 0=1$ and $\cos \pi=-1$ in the last step).

$$
\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x=\int_{0}^{\pi} \int_{0}^{y} \frac{\sin y}{y} d x d y=\int_{0}^{\pi} \sin y d y=2 .
$$

Example (6) Evaluate the integral

$$
\int_{0}^{1} \int_{y}^{1} \frac{1}{1+x^{4}} d x d y
$$

Solution: Direct computation encounters difficulty. Note that the region R is bounded by the lines $y=x, x=1$ and $y=0$. Change the order of integration to compute this integral (use $u=x^{2}$ in the third equality and note that $\tan ^{-1}(1)=\frac{\pi}{4}$ and $\tan ^{-1}(0)=0$).
$\int_{0}^{1} \int_{y}^{1} \frac{1}{1+x^{4}} d x d y=\int_{0}^{1} \int_{0}^{x} \frac{1}{1+x^{4}} d y d x=\int_{0}^{1} \frac{x}{1+x^{4}} d x=\frac{1}{2} \int_{0}^{1} \frac{1}{1+u^{2}} d u=\left.\frac{1}{2} \tan ^{-1} u\right|_{0} ^{1}=\frac{\pi}{4}$.

