Find and classify critical points

Useful facts: The discriminant $\Delta=f_{x x} f_{y y}-f_{x y}^{2}$ at a critical point $P\left(x_{0}, y_{0}\right)$ plays the following role:

1. If $\Delta\left(x_{0}, y_{0}\right)>0$ and $f_{x x}\left(x_{0}, y_{0}\right)>0$, then f has a local minimum at $\left(x_{0}, y_{0}\right)$.
2. If $\Delta\left(x_{0}, y_{0}\right)>0$ and $f_{x x}\left(x_{0}, y_{0}\right)<0$, then f has a local maximum at $\left(x_{0}, y_{0}\right)$.
3. If $\Delta\left(x_{0}, y_{0}\right)<0$, then f has neither a local minimum nor a local maximum at $\left(x_{0}, y_{0}\right)$ (saddle point at P).

Example (1) : Find and classify the critical points of $f(x, y)=x^{2}+4 x y+2 y^{2}+4 x-8 y+3$.
Solution: Compute $f_{x}=2 x+4 y+4$ and $f_{y}=4 x+4 y-8$. Solve $f_{x}=0$ and $f_{y}=0$ to get the only critical point $(6,-4)$. Note that $f(6,-4)=31$.

Compute $f_{x x}=2, f_{x y}=4$ and $f_{y y}=4$, and so $\Delta=(2)(4)-4^{2}<0$ at any point. Therefore at the critical point $(6,-4,31)$, the surface has a saddle point.

Example (2) : Find and classify the critical points of $f(x, y)=x^{2}-2 x y+y^{3}-y$.
Solution: Compute $f_{x}=2 x-2 y$ and $f_{y}=3 y^{2}-2 x-1$. Solve $f_{x}=0$ and $f_{y}=0$ to get $x=y$ and $(3 y+1)(y-1)=3 y^{2}-2 y-1=0$. Thus we obtain two critical points $(1,1)$ and $(-1 / 3,-1 / 3)$. Note that $f(1,1)=-1, f(-1 / 3,-1 / 3)=5 / 27$.

Compute $f_{x x}=2, f_{x y}=-4$ and $f_{y y}=6 y$. At $(1,1), \Delta(1,1)=12-(-4)^{2}<0$, and at $(-1 / 3,-1 / 3,5 / 27), \Delta(-1 / 3,-1 / 3)=<0$. Therefore at these two points $(1,1,-1)$ and $(-1 / 3,-1 / 3,5 / 27)$, the surface has saddle points.

Example (3) : Find and classify the critical points of $f(x, y)=3 x y-x^{3}-y^{3}$.
Solution: Compute $f_{x}=3 y-3 x^{2}$ and $f_{y}=3 x-3 y^{2}$. Solve $f_{x}=0$ and $f_{y}=0$ and note that $x \geq 0$ and $y \geq 0$ to get two critical points $(0,0)$ and $(1,1)$. Note that $f(0,0)=0$, $f(1,1)=1$.

Compute $f_{x x}=-6 x, f_{x y}=3$ and $f_{y y}=-6 y$. At $(0,0,0), \Delta(0,0)=0-3^{2}<0$, and at $(1,1,1), \Delta(1,1)>0$, and $f_{x x}(1,1)<0$. Therefore at $(0,0,0)$, the surface has a saddle points, and at $(1,1,1)$, the surface has a local maximum.

Example (4) : Find and classify the critical points of $f(x, y)=x^{3}+y^{3}+3 x y+3$.
Solution: Compute $f_{x}=3 x^{2}+3 y$ and $f_{y}=3 y^{2}+3 x$. Solve $f_{x}=3 x^{2}+3 y=0$ and $f_{y}=3 y^{2}+3 x=0$. Note that both $x \leq 0$ and $y \leq 0$. Combine the two equations to get
$x\left(x^{3}+1\right)=0$ and so $x=0$ or $x=-1$. As $y \leq 0$, we substitute $x=0$ and $x=-1$ respectively to get two critical points $(0,0)$ and $(-1,-1)$. Note that $f(0,0)=3$ and $f(-1,-1)=4$.

Compute $f_{x x}=6 x, f_{x y}=3$ and $f_{y y}=6 y$. As $\Delta(0,0)=-9<0$, the surface has a saddle point at $(0,0,3)$. As $\Delta(-1,-1)=27>0$ and $f_{x x}(-1,-1)=-6<0$, the surface has a local maximum at $(-1,-1,4)$.

Example (5) : Find and classify the critical points of $f(x, y)=2 x y e^{-x^{2}-y^{2}}$.
Solution: Compute $f_{x}=2 y e^{-x^{2}-y^{2}}-4 x^{2} y e^{-x^{2}-y^{2}}=2\left(1-2 x^{2}\right) y e^{-x^{2}-y^{2}}$ and $f_{y}=$ $2\left(1-2 y^{2}\right) x e^{-x^{2}-y^{2}}$. Solve $f_{x}=0$ and $f_{y}=0$ to get solutions $(0,0),(\pm 1 / \sqrt{2}, \pm 1 / \sqrt{2})$. Note that $f(0,0)=0, f(1 / \sqrt{2}, 1 / \sqrt{2})=f(-1 / \sqrt{2},-1 / \sqrt{2})=e^{-1}$ and $f(-1 / \sqrt{2}, 1 / \sqrt{2})=$ $f(1 / \sqrt{2},-1 / \sqrt{2})=-e^{-1}$.

Compute $f_{x x}=2\left(-4 x y e^{-x^{2}-y^{2}}-2 x\left(1-2 x^{2}\right) y e^{-x^{2}-y^{2}}\right)=-4 x y\left(3-x^{2}\right) e^{-x^{2}-y^{2}}, f_{x y}=$ $2\left(1-2 x^{2}\right)\left(1-2 y^{2}\right) e^{-x^{2}-y^{2}}$ and $f_{y y}=-4 x y\left(3-y^{2}\right) e^{-x^{2}-y^{2}}$, and so $\Delta(0,0)=-4<0$ $($ saddle point $) ; \Delta(1 / \sqrt{2}, 1 / \sqrt{2})=\Delta(-1 / \sqrt{2},-1 / \sqrt{2})=49>0$, and $f_{x x}(1 / \sqrt{2}, 1 / \sqrt{2})=$ $f_{x x}(-1 / \sqrt{2},-1 / \sqrt{2})<0$ (local maximum) $; \Delta(-1 / \sqrt{2}, 1 / \sqrt{2})=\Delta(1 / \sqrt{2},-1 / \sqrt{2})=49>0$, and $f_{x x}(-1 / \sqrt{2}, 1 / \sqrt{2})=f_{x x}(1 / \sqrt{2},-1 / \sqrt{2})>0$ (local minimum).

