Write the equation of a sphere

Example: Write the equation of a sphere one of whose diameter is the line segment joining $(3,5,-3)$ and $(7,3,1)$.
Solution: Find the center $\left(x_{0}, y_{0}, z_{0}\right)$ of the sphere by computing the midpoint of the line segment.

$$
x_{0}=\frac{3+7}{2}=5, y_{0}=\frac{5+3}{2}=4, z_{0}=\frac{-3+1}{2}=-1 .
$$

The radius of the sphere is the distance from the center to one of the points (say $(3,5,-3)$).

$$
r^{2}=(5-3)^{2}+(4-5)^{2}+(-1-(-3))^{2}=4+1+4=9 .
$$

Answer: The equation of the sphere is

$$
(x-5)^{2}+(y-4)^{2}+(z+1)^{2}=9 .
$$

Compute the center and the radius of a sphere

Example: Find the center and the radius of the following sphere,

$$
x^{2}+y^{2}+z^{2}-8 x-6 y+10 z+34=0 .
$$

[5pt] Solution: Completing the squares to get

$$
x^{2}-8 x=(x-4)^{2}-16, y^{2}-6 y=(y-3)^{2}-9, z^{2}+10 z=(z+5)^{2}-25,
$$

and so $x^{2}+y^{2}+z^{2}-8 x-6 y+10 z+34=0$ is equivalent to $(x-4)^{2}+(y-3)^{2}+(z+5)^{2}=16$. Thus the center of the sphere is $(4,3,-5)$ and the radius is 4 .

Determine if two vectors are parallel or perpendicular

Example(1): Suppose $\mathbf{a}=(12,-20,16)$ and $\mathbf{b}=(-9,15,-12)$. Note that $\mathbf{a}=\frac{4}{3} \mathbf{b}$. Thus \mathbf{a} and \mathbf{b} are parallel.
Example(2): Suppose $\mathbf{a}=(12,-20,16)$ and $\mathbf{b}=(-9,15,24)$. From Example (1) we know that the two vectors are not parallel. Note that $\mathbf{a} \cdot \mathbf{b}=(12)(-9)+(-20)(15)+(16)(24)=-108-300+384 \neq$ 0 . Thus \mathbf{a} and \mathbf{b} are neither parallel nor perpendicular.

