Compute the Gradient Vector

Fact: The gradient vector of functions $g(x, y)$ and $f(x, y, z)$ are, respectively,

$$
\nabla g=\left(g_{x}, g_{y}\right) \text { and } \nabla f=\left(f_{x}, f_{y}, f_{z}\right) .
$$

Example (1): Find the gradient vector of $f(x, y)=3 x^{2}-5 y^{2}$ at the point $P(2,-3)$.
Solution: First compute $\nabla f=(6 x,-10 y)$. At P, the answer is $\nabla f(2,-3)=(12,30)$.
Example (2) : Find the gradient vector of $f(x, y)=(2 x-3 y+5 z)^{5}$ at the point $P(-5,1,3)$.
Solution: First compute $\nabla f=\left(10(2 x-3 y+5 z)^{4},-15(2 x-3 y+5 z)^{4}, 25(2 x-3 y+5 z)^{4}\right)$.
At P, the answer is $\nabla f(-5,1,3)=(160,-240,400)$.

Compute the directional derivative of a function f in the direction v

Fact: The directional derivative of a function f in the direction \mathbf{v} is the dot product $\nabla f \cdot \frac{\mathbf{v}}{\mathbf{v} \mid}$.
Example (1) : Find the directional derivative of $f(x, y)=e^{x} \sin y$ at the point $P\left(0, \frac{\pi}{4}\right)$ in the direction $\mathbf{v}=(1,-1)$.

Solution:

(Step 1) First compute $\nabla f=\left(e^{x} \sin y, e^{x} \cos y\right)$. At $P, \nabla f\left(0, \frac{\pi}{4}\right)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
(Step 2) Find the unit vector that has the same direction as \mathbf{v}. Compute $|\mathbf{v}|=\sqrt{2}$. Then $\mathbf{u}=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.
(Step 3) Find the answer. Compute the dot product $\nabla f\left(0, \frac{\pi}{4}\right) \cdot \mathbf{u}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \cdot\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=0$.
Example (2) : Find the directional derivative of $f(x, y, z)=\ln \left(1+x^{2}+y^{2}+z^{2}\right)$ at the point $P(1,-1,1)$ in the direction $\mathbf{v}=(2,-2,-3)$.

Solution:

(Step 1) First compute

$$
\nabla f=\left(\frac{2 x}{1+x^{2}+y^{2}+z^{2}}, \frac{2 y}{1+x^{2}+y^{2}+z^{2}}, \frac{2 z}{1+x^{2}+y^{2}+z^{2}}\right) .
$$

At $P, \nabla f(1,-1,1)=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.
(Step 2) Find the unit vector that has the same direction as \mathbf{v}. Compute $|\mathbf{v}|=\sqrt{4+4+9}=$ $\sqrt{17}$. Then $\mathbf{u}=\left(\frac{2}{\sqrt{17}},-\frac{2}{\sqrt{17}},-\frac{3}{\sqrt{17}}\right)$.
(Step 3) Find the answer. Compute the dot product $\nabla f(1,-1,1) \cdot \mathbf{u}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \cdot\left(\frac{2}{\sqrt{17}},-\frac{2}{\sqrt{17}},-\frac{3}{\sqrt{17}}\right)=$ $-\frac{3}{2 \sqrt{17}}$.

