## Compute partial derivatives with Chain Rule

Formulae: These are the most frequently used ones:

1. If $w=f(x, y)$ and $x=x(t)$ and $y=y(t)$ such that $f, x, y$ are all differentiable. Then

$$
\begin{equation*}
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t} . \tag{1}
\end{equation*}
$$

2. If $w=f\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ and for each $i,(1 \leq i \leq n), x_{i}=x_{i}\left(t_{1}, t_{2}, \cdots, t_{n}\right)$ such that $f, x_{1}, \cdots, x_{m}$ are all differentiable. Then

$$
\begin{equation*}
\frac{\partial w}{\partial t_{i}}=\frac{\partial w}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\cdots+\frac{\partial w}{\partial x_{m}} \frac{\partial x_{m}}{\partial t_{i}} . \tag{2}
\end{equation*}
$$

Example (1) : Given $w=\ln (u+v+z)$, with $u=\cos ^{2} t, v=\sin ^{2} t$ and $z=t^{2}$, find $d w / d t$ both by using the chain rule and by expressing $w$ explicitly as a function of $t$ before differentiating.

Solution: First we apply Chain Rule (1):

$$
\frac{d w}{d t}=\frac{\partial w}{\partial u} \frac{d u}{d t}+\frac{\partial w}{\partial v} \frac{d v}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}=\frac{1}{u+v+z}(-2 \cos t \sin t+2 \sin t \cos t+2 t)=\frac{2 t}{u+v+z}
$$

Next, we express $w$ as a function of $t$ by substituting $u, v$ and $z$ into $w$ to get $w=\ln \left(\cos ^{2} t+\right.$ $\left.\sin ^{2} t+t^{2}\right)=\ln \left(1+t^{2}\right)$. Therefore, $d w / d t=2 t /\left(1+t^{2}\right)$.

Example (2): Given $w=y z+z x+x y, x=s^{2}-t^{2}, y=s^{2}+t^{2}$ and $z=s^{2} t^{2}$, find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$.

Solution: This is a partial derivative problem and so we apply Chain Rule (2).

$$
\begin{aligned}
& \frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s}=(z+y)(2 s)+(z+x) 2 s+(x+y) 2 s t^{2} \\
& \frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial t}=-(z+y)(2 t)+(z+x) 2 t+(x+y) 2 s^{2} t
\end{aligned}
$$

Example (3) : Given $p=f(x, y, z), x=x(u, v), y=y(u, v)$ and $z=z(u, v)$, write the chain rule formulas giving the partial derivatives of the dependent variable $p$ with respect to each independent variable.

Solution: This is a partial derivative problem and so we apply Chain Rule (2).

$$
\begin{aligned}
& \frac{\partial p}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial u} \\
& \frac{\partial p}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial v}
\end{aligned}
$$

Example (4) : Given $x^{3}+y^{3}+z^{3}=x y z$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ as functions of $x, y$ and $z$.
Solution: As $z$ is an implicit function of $x$ and $y$, implicit differentiation must be used. Just view $z=z(x, y)$ everywhere $z$ occurs when we differentiate both sides of the equation. (Step 1) View $z=z(x, y)$ and differentiate both sides of the equation with respect to $x$ to get

$$
3 x^{2}+3 z^{2} \frac{\partial z}{\partial x}=y z+x y \frac{\partial z}{\partial x}
$$

(Step 2) Solve for $\frac{\partial z}{\partial x}$ in the resulting equation above.

$$
z_{x}=\frac{\partial z}{\partial x}=\frac{y z-3 x^{2}}{3 z^{2}-x y}
$$

Do the same for $y$.
(Step 1) View $z=z(x, y)$ and differentiate both sides of the equation with respect to $y$ to get

$$
3 y^{2}+3 z^{2} \frac{\partial z}{\partial y}=x z+x y \frac{\partial z}{\partial y}
$$

(Step 2) Solve for $\frac{\partial z}{\partial y}$ in the resulting equation above.

$$
z_{y}=\frac{\partial z}{\partial y}=\frac{x z-3 y^{2}}{3 z^{2}-x y}
$$

Example (5) : Given $x^{3}+y^{3}+z^{3}=x y z$ as the equation of a surface, find an equation of the plane tangent to this surface at the point $P(1,-1,-1)$.

Solution 1: View $z=z(x, y)$, and so the vector $\mathbf{n}=\left(z_{x}, z_{y},-1\right)$ at $P$ will be a normal vector of the tangent plane. From Example (4) above, we have, at $P(1,-1,-1)$,

$$
\begin{aligned}
& z_{x}=\left.\frac{y z-3 x^{2}}{3 z^{2}-x y}\right|_{(x, y, z)=(1,-1,-1)}=\frac{(-1)(-1)-3}{3(-1)^{2}-1(-1)}=\frac{-2}{4}=-\frac{1}{2} \\
& z_{y}=\left.\frac{x z-3 y^{2}}{3 z^{2}-x y}\right|_{(x, y, z)=(1,-1,-1)}=\frac{1(-1)-3}{3(-1)^{2}-1(-1)}=\frac{-4}{4}=-1
\end{aligned}
$$

Hence the equation of the tangent plane is

$$
-\frac{1}{2}(x-1)-(y+1)-(z+1)=0, \text { or }(x-1)+2(y+1)+2(z+1)=0
$$

Solution 2: One can also set $F(x, y, z)=x^{3}+y^{3}+z^{3}-x y z$ and view the equation of the surface is $F(x, y, z)=0$. In this case, the vector $\mathbf{u}=\left(F_{x}, F_{y}, F_{z}\right)$ at $P(1,-1,-1)$ can be a normal vector of the tangent plane. We compute the partial derivatives:

$$
F_{x}=\frac{\partial F}{\partial x}=3 x^{2}-y z, F_{y}=\frac{\partial F}{\partial y}=3 y^{2}-x z, F_{z}=\frac{\partial F}{\partial z}=3 z^{2}-x y
$$

Therefore, $\mathbf{u}=(2,4,4)$ and so an equation of the tangent plane is

$$
2(x-1)+4(y+1)+4(z+1)=0, \text { or }(x-1)+2(y+1)+2(z+1)=0
$$

Example (6) : Suppose that $w=f(u)$ and that $u=x+y$. Show that $\frac{\partial w}{\partial x}=\frac{\partial w}{\partial y}$.
Solution: Notice that $\frac{\partial u}{\partial x}=1=\frac{\partial u}{\partial y}$. By Chain Rule (2),

$$
\frac{\partial w}{\partial x}=\frac{\partial w}{\partial u} \frac{\partial u}{\partial x}=\frac{\partial w}{\partial u} \frac{\partial u}{\partial y}=\frac{\partial w}{\partial y}
$$

Example (7): Suppose that $w=f(x, y)$ and that $x=r \cos \theta$ and $y=r \sin \theta$. Show that

$$
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}}
$$

Solution: Apply Chain Rule (2) to compute the first order of partial derivatives

$$
\begin{aligned}
\frac{\partial w}{\partial r} & =\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}=w_{x} \cos \theta+w_{y} \sin \theta \\
\frac{\partial w}{\partial \theta} & =\frac{\partial w}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial \theta}=-w_{x} r \sin \theta+w_{y} r \cos \theta
\end{aligned}
$$

Then, we apply Chain Rule (2) again to compute the second order of partial derivatives (making use of $w_{x y}=w_{y x}$ ),

$$
\begin{align*}
\frac{\partial^{2} w}{\partial r^{2}} & =w_{x x} \cos ^{2} \theta+w_{x y} \cos \theta \sin \theta+w_{y x} \sin \theta \cos \theta+w_{y y} \sin ^{2} \theta  \tag{3}\\
& =w_{x x} \cos ^{2} \theta+\left(w_{x y}+w_{y x}\right) \cos \theta \sin \theta+w_{y y} \sin ^{2} \theta
\end{align*}
$$

and

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial \theta^{2}} & =w_{x x} r^{2} \sin ^{2} \theta-w_{x y} r^{2} \sin \theta \cos \theta-w_{x} r \cos \theta+w_{y y} r^{2} \cos ^{2} \theta+w_{y x} r^{2} \cos \theta(-\sin \theta)-w_{y} r \sin \theta \\
& =w_{x x} r^{2} \sin ^{2} \theta+w_{y y} r^{2} \cos ^{2} \theta-\left(w_{x y}+w_{y x}\right) r^{2} \sin \theta \cos \theta-w_{x} r \cos \theta-w_{y} r \sin \theta
\end{aligned}
$$

It follows that

$$
\begin{align*}
\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}} & =w_{x x} \sin ^{2} \theta+w_{y y} \cos ^{2} \theta-\left(w_{x y}+w_{y x}\right) \sin \theta \cos \theta-\frac{w_{x} \cos \theta+w_{y} \sin \theta}{r}  \tag{4}\\
\frac{1}{r} \frac{\partial w}{\partial r} & =\frac{w_{x} \cos \theta+w_{y} \sin \theta}{r} \tag{5}
\end{align*}
$$

Now add equations (3), (4) and (5) side by side and apply $\sin ^{2} \theta+\cos ^{2} \theta=1$ to get the conclusion.

