Find the maximum and minimum values of f(x, y) over a region R

Key Idea: The maximum and the minimum mast occur at either a critical point or on the boundary of the region.

Example (1): Find the maximum and minimum values of $f(x, y) = x^2 + y^2 - x$ over a region R, which is the square with vertices at $(\pm 1, \pm 1)$.

Solution: Compute $f_x = 2x - 1$ and $f_y = 2y$, and so (1/2, 0) is the only critical point inside R. The value of $f(1/2, 0) = -\frac{1}{4}$.

The region of R consists of 4 line segments: $L_1 : (x, 1)$ with $-1 \le x \le 1$, $L_2 : (x, -1)$ with $-1 \le x \le 1$, $L_3 : (1, y)$ with $-1 \le y \le 1$, $L_4 : (-1, y)$ with $-1 \le y \le 1$.

Compute the extremal values of f(x, y) on each segment of boundary as follows.

On L_1 , $f(x, 1) = x^2 + 1 - x$ with x in the closed interval [-1, 1]. Using Calculus I technique, the maximum is f(-1, 1) = 3 and the minimum is $f(\frac{1}{2}, 1) = \frac{3}{4}$.

On L_2 , $f(x, -1) = x^2 + 1 - x$ with x in the closed interval [-1, 1]. Using Calculus I technique, the maximum is f(-1, 1) = 3 and the minimum is $f(\frac{1}{2}, 1) = \frac{3}{4}$.

On L_3 , $f(1, y) = y^1$ with y in the closed interval [-1, 1]. Using Calculus I technique, the maximum is f(1, 1) = 1 and the minimum is f(1, 0) = 0.

On L_4 , $f(-1, y) = 2 + y^1$ with y in the closed interval [-1, 1]. Using Calculus I technique, the maximum is f(-1, 1) = 3 and the minimum is f(-1, 0) = 2.

Compare all the values computed thus far, we conclude that the maximum attained by f in R is f(-1,1) = 3 and the minimum attained by f in R is $f(1/2,0) = -\frac{1}{4}$.

Example (2): Find the maximum and minimum values of $f(x, y) = x^2 + y^2 - x - y$ over a region R, which is the triangular region with vertices at (0, 0), (2, 0) and (0, 2).

Solution: Compute $f_x = 2x - 1$ and $f_y = 2y - 1$, and so (1/2, 1/2) is the only critical point inside R. The value of $f(1/2, 1/2) = -\frac{1}{2}$.

The region of R consists of 3 line segments: $L_1: (x,0)$ with $0 \le x \le 2$, $L_2: (0,y)$ with $0 \le y \le 2, L_3: (x, 2-x)$ with $0 \le x \le 2$.

Compute the extremal values of f(x, y) on each segment of boundary as follows.

On L_1 , $f(x,0) = x^2 - x$ with x in the closed interval [0,2]. Using Calculus I technique, the maximum is f(0,2) = 2 and the minimum is $f(\frac{1}{2},0) = -\frac{1}{4}$.

On L_2 , $f(0, y) = y^2 - y$ with y in the closed interval [0, 2]. Using Calculus I technique, the maximum is f(0, 2) = 2 and the minimum is $f(0, \frac{1}{2}) = -\frac{1}{4}$. On L_3 , $f(x, 2 - x) = x^2 + (2 - x)^2 - x - (2 - x) = 2x^2 - 4x + 2$ with x in the closed interval [0, 2]. Using

On L_3 , $f(x, 2-x) = x^2 + (2-x)^2 - x - (2-x) = 2x^2 - 4x + 2$ with x in the closed interval [0,2]. Using Calculus I technique, the maximum is f(0,2) = f(2,0) = 2 and the minimum is f(1,1) = 0.

Compare all the values computed thus far, we conclude that the maximum attained by f in R is f(0,2) = f(2,0) = 2 and the minimum attained by f in R is $f(1/2, 1/2) = -\frac{1}{2}$.