Find the maximum and minimum values of $f(x, y)$ over a region R

Key Idea: The maximum and the minimum mast occur at either a critical point or on the boundary of the region.

Example (1) : Find the maximum and minimum values of $f(x, y)=x^{2}+y^{2}-x$ over a region R, which is the square with vertices at $(\pm 1, \pm 1)$.
Solution: Compute $f_{x}=2 x-1$ and $f_{y}=2 y$, and so $(1 / 2,0)$ is the only critical point inside R. The value of $f(1 / 2,0)=-\frac{1}{4}$.

The region of R consists of 4 line segments: $L_{1}:(x, 1)$ with $-1 \leq x \leq 1, L_{2}:(x,-1)$ with $-1 \leq x \leq$ $1, L_{3}:(1, y)$ with $-1 \leq y \leq 1, L_{4}:(-1, y)$ with $-1 \leq y \leq 1$.

Compute the extremal values of $f(x, y)$ on each segment of boundary as follows.
On $L_{1}, f(x, 1)=x^{2}+1-x$ with x in the closed interval $[-1,1]$. Using Calculus I technique, the maximum is $f(-1,1)=3$ and the minimum is $f\left(\frac{1}{2}, 1\right)=\frac{3}{4}$.

On $L_{2}, f(x,-1)=x^{2}+1-x$ with x in the closed interval $[-1,1]$. Using Calculus I technique, the maximum is $f(-1,1)=3$ and the minimum is $f\left(\frac{1}{2}, 1\right)=\frac{3}{4}$.

On $L_{3}, f(1, y)=y^{1}$ with y in the closed interval $[-1,1]$. Using Calculus I technique, the maximum is $f(1,1)=1$ and the minimum is $f(1,0)=0$.

On $L_{4}, f(-1, y)=2+y^{1}$ with y in the closed interval $[-1,1]$. Using Calculus I technique, the maximum is $f(-1,1)=3$ and the minimum is $f(-1,0)=2$.

Compare all the values computed thus far, we conclude that the maximum attained by f in R is $f(-1,1)=$ 3 and the minimum attained by f in R is $f(1 / 2,0)=-\frac{1}{4}$.
Example (2) : Find the maximum and minimum values of $f(x, y)=x^{2}+y^{2}-x-y$ over a region R, which is the triangular region with vertices at $(0,0),(2,0)$ and $(0,2)$.
Solution: Compute $f_{x}=2 x-1$ and $f_{y}=2 y-1$, and so $(1 / 2,1 / 2)$ is the only critical point inside R. The value of $f(1 / 2,1 / 2)=-\frac{1}{2}$.

The region of R consists of 3 line segments: $L_{1}:(x, 0)$ with $0 \leq x \leq 2, L_{2}:(0, y)$ with $0 \leq y \leq 2, L_{3}$: $(x, 2-x)$ with $0 \leq x \leq 2$.

Compute the extremal values of $f(x, y)$ on each segment of boundary as follows.
On $L_{1}, f(x, 0)=x^{2}-x$ with x in the closed interval [0,2]. Using Calculus I technique, the maximum is $f(0,2)=2$ and the minimum is $f\left(\frac{1}{2}, 0\right)=-\frac{1}{4}$.

On $L_{2}, f(0, y)=y^{2}-y$ with y in the closed interval [0,2]. Using Calculus I technique, the maximum is $f(0,2)=2$ and the minimum is $f\left(0, \frac{1}{2}\right)=-\frac{1}{4}$.

On $L_{3}, f(x, 2-x)=x^{2}+(2-x)^{2}-x-(2-x)=2 x^{2}-4 x+2$ with x in the closed interval [0, 2]. Using Calculus I technique, the maximum is $f(0,2)=f(2,0)=2$ and the minimum is $f(1,1)=0$.

Compare all the values computed thus far, we conclude that the maximum attained by f in R is $f(0,2)=$ $f(2,0)=2$ and the minimum attained by f in R is $f(1 / 2,1 / 2)=-\frac{1}{2}$.

