## Compute partial derivatives

Example (1): Compute the first order partial derivatives of $f(x, y)=\frac{x y}{x^{2}+y^{2}}$.
Solution: View $y$ as a constant to compute $f_{x}$.

$$
f_{x}=\frac{y\left(x^{2}+y^{2}\right)-2 x(x y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{3}-y x^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
$$

View $x$ as a constant to compute $f_{y}$. (You may also observe the symmetry between $x$ and $y$ ),

$$
f_{y}=\frac{x\left(x^{2}+y^{2}\right)-2 y(x y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{3}-x y^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
$$

Example (2) : Compute the first order partial derivatives of $f(x, y)=x^{y}$.
Solution: Fancy rules are not needed. View $y$ as a constant to compute $f_{x}=y x^{y-1}$; and view $x$ as a constant to compute $f_{y}=x^{y} \ln x$.

Example (3): Verify that $z_{x y}=z_{y x}$ if $z=2 x^{3}+5 x^{2} y-6 y^{2}+x y^{4}$.
Solution: View $y$ as a constant to compute $z_{x}=6 x^{2}+10 x y+y^{4}$; then view $x$ as a constant to compute $z_{x y}=\left(z_{x}\right)_{y}=10 x+4 y^{3}$.

Similarly, view $x$ as a constant to compute $z_{y}=5 x^{2}-12 y+4 x y^{3}$; then view $y$ as a constant to compute $z_{y x}=\left(z_{y}\right)_{x}=10 x+4 y^{3}$. It is now clear that $z_{x y}=z_{y x}$.

## Find an equation of the tangent plane

Useful Fact: A normal vector of the plane tangent to a surface $z=f(x, y)$ at a point is $\left(z_{x}, z_{y},-1\right)$ at $P$.
Example (1) : Find an equation of a plane tangent to $z=\sin \frac{\pi x y}{2}$ at $P(3,5,-1)$.
Solution: Compute the partial derivatives

$$
z_{x}=\frac{\pi y}{2} \cos \frac{\pi x y}{2}, \text { and } z_{y}=\frac{\pi x}{2} \cos \frac{\pi x y}{2} .
$$

Note that $\cos \frac{15 \pi}{2}=0$. Thus a normal vector of the plane is $\mathbf{n}=(0,0,-1)$, and so an equation of the plane is $z=-1$.
Example (2) : Find an equation of a plane tangent to $z=\sqrt{x^{2}+y^{2}}$ at $P(3,-4,5)$.
Solution: Compute the partial derivatives

$$
z_{x}=\frac{x}{\sqrt{x^{2}+y^{2}}}, \text { and } z_{y}=\frac{y}{\sqrt{x^{2}+y^{2}}} .
$$

Thus a normal vector of the plane is $\mathbf{n}=\left(\frac{3}{5},-\frac{4}{5},-1\right)$, and so an equation of the plane is

$$
3(x-3)-4(y+4)-5(z-5)=0 .
$$

Example (3): Show that there at which the plane tangent to $z=x^{2}+2 x y+2 y^{2}-6 x+8 y$ is horizontal.
Solution: Compute $z_{x}=2 x+2 y-6$ and $z_{y}=2 x+4 y+8$. A horizontal plane must have a normal vector parallel to $\mathbf{k}$, and so the point at which the tangent plane is horizontal must satisfy $z_{x}=0$ and $z_{y}=0$. Solve this system

$$
\left\{\begin{array}{l}
2 x+2 y-6=0 \\
2 x+4 y+8=0
\end{array}\right.
$$

to get the answer $x=10, y=-7$. Note that $z(10,-7)=-58$. Therefore, at $(10,-7,-58)$, the tangent plane is horizontal, and this is the only point with such a property.

