Use limit laws to evaluate limits

Example (1) : Compute $\lim _{(x, y) \rightarrow(0,0)} \exp \left(\frac{1}{x^{2}+y^{2}}\right)$.
Solution: Set $r^{2}=x^{2}+y^{2}$. Then

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \exp \left(\frac{1}{x^{2}+y^{2}}\right) & =\lim _{r \rightarrow 0} e^{\frac{-1}{r^{2}}}=\lim _{r \rightarrow 0} \frac{1}{e^{\frac{1}{r^{2}}}} \quad \text { set } u=\frac{1}{r^{2}} \\
& =\lim _{u \rightarrow \infty} \frac{1}{e^{u}}=0
\end{aligned}
$$

Example (2) : Compute $\lim _{(x, y, z) \rightarrow(1,1,0)} \frac{x y-z}{\cos (x y z)}$.
Solution: As $\lim _{(x, y, z) \rightarrow(1,1,0)} x y-z=1$ and $\lim _{(x, y, z) \rightarrow(1,1,0)} \cos (x y z)=\cos 0=1$, the answer is 1 .

Determine if the limit does not exist

Example (1): Show that the limit $\lim _{(x, y) \rightarrow(2,-2)} \frac{4-x y}{4+x y}$.
Solution: As the denominator approaches to zero but the numerator is not, the limit does not exist.
Example (2) : Show that the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.
Solution: Let (x, y) approach to $(0,0)$ along the straight line $y=m x$, where m can take any real value. This amounts to substitute $y=m x$ in the limit and so $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=$ $\lim _{(x, y) \rightarrow(0,0)} \frac{\left(1-m^{2}\right) x^{2}}{\left(1+m^{2}\right) x^{2}}=\frac{1-m^{2}}{1+m^{2}}$. As m can be 1 or 2 , the same limit, when (x, y) goes to $(0,0)$ along $y=x$, is 0 ; and when (x, y) goes to $(0,0)$ along $y=2 x$, is not zero. Therefore, the limit does not exist.
Example (3) : Determine if the limit $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y z}{x^{2}+y^{2}+z^{2}}$ exists or not.
Solution: Convert to spherical coordinates to get

$$
\begin{aligned}
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y z}{x^{2}+y^{2}+z^{2}} & =\lim _{\rho \rightarrow 0} \frac{\rho^{3} \sin \phi \cos \theta \sin \phi \sin \theta \cos \phi}{\rho^{2}} \\
& =\lim _{\rho \rightarrow 0} \rho \sin \phi \cos \theta \sin \phi \sin \theta \cos \phi=0,
\end{aligned}
$$

as for any value of θ and ϕ, we always have

$$
|\sin \phi \cos \theta \sin \phi \sin \theta \cos \phi| \leq 1
$$

Therefore, the limit exists and its value is 0 .

