Determine the largest possible domain of a function

Example (1) : Determine the largest possible domain of $f(x, y) = (\sqrt{2x} + \sqrt[3]{3y})$.

Solution: Any real value of y can make $\sqrt[3]{3y}$ meaningful, and so the domain for $\sqrt[3]{3y}$ is the whole y-axis. Only non negative real value of x can make $\sqrt{2x}$ meaningful, and so the domain for $\sqrt{2x}$ is the half line $[0, \infty)$. Combining these facts, we conclude that the domain of the function $f(x, y) = (\sqrt{2x} + \sqrt[3]{3y})$ is the half plane where $x \ge 0$, or in set notation: $\{(x, y) : 0 \le x < \infty \}$ and $-\infty < y < \infty$.

Example (2) : Determine the largest possible domain of $f(x, y) = \frac{xy}{x^2 - y^2}$.

Solution: To avoid zero denominators, we must have $x^2 - y^2 \neq 0$. Since $x^2 - y^2 = (x - y)(x + y)$, the domain of this function is the whole *xy*-plane with the two straight lines y = x and y = -x taken away.