Determine the largest possible domain of a function

Example (1) : Determine the largest possible domain of $f(x, y)=(\sqrt{2 x}+\sqrt[3]{3 y}$.
Solution: Any real value of y can make $\sqrt[3]{3 y}$ meaningful, and so the domain for $\sqrt[3]{3 y}$ is the whole y-axis. Only non negative real value of x can make $\sqrt{2 x}$ meaningful, and so the domain for $\sqrt{2 x}$ is the half line $[0, \infty)$. Combining these facts, we conclude that the domain of the function $f(x, y)=(\sqrt{2 x}+\sqrt[3]{3 y}$ is the half plane where $x \geq 0$, or in set notation: $\{(x, y): 0 \leq x<\infty$ and $-\infty<y<\infty\}$.

Example (2) : Determine the largest possible domain of $f(x, y)=\frac{x y}{x^{2}-y^{2}}$.
Solution: To avoid zero denominators, we must have $x^{2}-y^{2} \neq 0$. Since $x^{2}-y^{2}=(x-y)(x+y)$, the domain of this function is the whole $x y$-plane with the two straight lines $y=x$ and $y=-x$ taken away.

