Convert equations from one coordinate system to another: II

Useful Facts

Cylindrical	Rectangle	Spherical	Rectangle
$\int r^2 = x^2 + y^2$	$\int x = r \cos \theta$	$\int \rho^2 = x^2 + y^2 + z^2$	$\int x = \rho \sin \phi \cos \theta$
$\begin{cases} \theta &= \tan^{-1} \frac{y}{x} \end{cases}$	$\begin{cases} y = r\sin\theta \end{cases}$	$\begin{cases} \phi = \tan^{-1} \frac{\sqrt{x^2 + y^2}}{z} \end{cases}$	$\begin{cases} y = \rho \sin \phi \sin \theta \end{cases}$
$\left(\begin{array}{cc} z &= z \end{array} \right)$	z = z	$\theta = \tan^{-1} \frac{y}{x}$	$z = \rho \cos \phi$

Example (4): Convert the equation $x^2 + y^2 = 2x$ to both cylindrical and spherical coordinates. **Solution**: Apply the Useful Facts above to get (for cylindrical coordinates)

 $r^2 = 2r\cos\theta$, or simply $r = 2\cos\theta$;

and (for spherical coordinates)

$$\rho^2 \sin^2 \phi = 2\rho \sin \phi \cos \theta$$
 or simply $\rho \sin \phi = 2\cos \theta$.

Example (5) : Describe the graph $r = 4 \cos \theta$ in cylindrical coordinates.

Solution: Multiplying both sides by r to get $r^2 = 4r \cos \theta$. Then apply the Useful Facts to get $x^2 + y^2 = 4x$. Completing the squares, we obtain $(x - 2)^2 + y^2 = 4$, and so this is a vertical cylinder whose axis is the straight line L : x = 2, y = 0, z = t.

Example (6) : Describe the graph $\rho = 4 \cos \phi$ in spherical coordinates.

Solution: Multiplying both sides by ρ to get $\rho^2 = 4\rho \cos \theta$. Then apply the Useful Facts to get $x^2 + y^2 + z^2 = 4z$. Completing the squares, we obtain $x^2 + y^2 + (z - 2)^2 = 4$, and so this is a sphere whose center is at (0, 0, 2) with radius 2.

Example (7): Convert the equation $z = x^2 - y^2$ to both cylindrical and spherical coordinates. Solution: Apply the Useful Facts to get (for cylindrical coordinates)

$$z = r^2 (\cos^2 \theta - \sin^2 \theta),$$

and (for spherical coordinates)

 $\rho \cos \theta = \rho^2 \sin^2 \phi (\cos^2 \theta - \sin^2 \theta)$, or simply $\cos \theta = \rho \sin^2 \phi (\cos^2 \theta - \sin^2 \theta)$.