Convert equations from one coordinate system to another: II

Useful Facts

$$
\begin{aligned}
& \text { Cylindrical Rectangle Spherical Rectangle } \\
& \left\{\begin{array} { l }
{ r ^ { 2 } = x ^ { 2 } + y ^ { 2 } } \\
{ \theta = \operatorname { t a n } ^ { - 1 } \frac { y } { x } } \\
{ z = z }
\end{array} \left\{\begin{array} { l }
{ x = r \operatorname { c o s } \theta } \\
{ y = r \operatorname { s i n } \theta } \\
{ z = z }
\end{array} \quad \left\{\begin{array} { l }
{ \rho ^ { 2 } = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \\
{ \phi = \operatorname { t a n } ^ { - 1 } \frac { \sqrt { x ^ { 2 } + y ^ { 2 } } } { z } } \\
{ \theta = \operatorname { t a n } ^ { - 1 } \frac { y } { x } }
\end{array} \left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array}\right.\right.\right.\right.
\end{aligned}
$$

Example (4) : Convert the equation $x^{2}+y^{2}=2 x$ to both cylindrical and spherical coordinates.
Solution: Apply the Useful Facts above to get (for cylindrical coordinates)

$$
r^{2}=2 r \cos \theta, \text { or simply } r=2 \cos \theta
$$

and (for spherical coordinates)

$$
\rho^{2} \sin ^{2} \phi=2 \rho \sin \phi \cos \theta \text { or simply } \rho \sin \phi=2 \cos \theta
$$

Example (5) : Describe the graph $r=4 \cos \theta$ in cylindrical coordinates.
Solution: Multiplying both sides by r to get $r^{2}=4 r \cos \theta$. Then apply the Useful Facts to get $x^{2}+y^{2}=4 x$. Completing the squares, we obtain $(x-2)^{2}+y^{2}=4$, and so this is a vertical cylinder whose axis is the straight line $L: x=2, y=0, z=t$.

Example (6) : Describe the graph $\rho=4 \cos \phi$ in spherical coordinates.
Solution: Multiplying both sides by ρ to get $\rho^{2}=4 \rho \cos \theta$. Then apply the Useful Facts to get $x^{2}+y^{2}+z^{2}=4 z$. Completing the squares, we obtain $x^{2}+y^{2}+(z-2)^{2}=4$, and so this is a sphere whose center is at $(0,0,2)$ with radius 2 .

Example (7) : Convert the equation $z=x^{2}-y^{2}$ to both cylindrical and spherical coordinates.
Solution: Apply the Useful Facts to get (for cylindrical coordinates)

$$
z=r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
$$

and (for spherical coordinates)

$$
\rho \cos \theta=\rho^{2} \sin ^{2} \phi\left(\cos ^{2} \theta-\sin ^{2} \theta\right), \text { or simply } \cos \theta=\rho \sin ^{2} \phi\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
$$

