Convert equations from one coordinate system to another: I

Useful Facts

Cylindrical	Rectangle	Spherical	Rectangle
$\int r^2 = x^2 + y^2$	$\int x = r \cos \theta$	$\int \rho^2 = x^2 + y^2 + z^2$	$\int x = \rho \sin \phi \cos \theta$
$\begin{cases} \theta &= \tan^{-1} \frac{y}{x} \end{cases}$	$\begin{cases} y = r\sin\theta \end{cases}$	$\begin{cases} \phi = \tan^{-1} \frac{\sqrt{x^2 + y^2}}{z} \end{cases}$	$\begin{cases} y = \rho \sin \phi \sin \theta \end{cases}$
$\left(\begin{array}{cc} z & = z \end{array} \right)$	z = z	$\theta = \tan^{-1} \frac{y}{x}$	$z = \rho \cos \phi$

Example (1) : Describe the graph r = 5 in cylindrical coordinates.

Solution: As z and θ can take any values, the graph of r = 5 is an infinite cylinder with z-axis as the axis of the cylinder, and every point on the graph has distance 5 to the z-axis. Notice that the straight line $L : x = \sqrt{5}, y = 0, z = t$ is on this graph, this graph can also be obtained by rotating L about the z-axis.

Example (2) : Describe the graph $\theta = \frac{\pi}{4}$ in cylindrical (or spherical) coordinates.

Solution: As z and r can take any values, the graph of $\theta = \frac{\pi}{4}$ consists of all the points in the space whose θ value is $\frac{\pi}{4}$, and so it is a plane that contains the z-axis.

One can also convert this equation into rectangular coordinates by using the formula $y = x \tan \theta = x \tan \frac{\pi}{4} = x$. Therefore, we can equivalently describe the graph of y = x in the space. Everybody knows that y = x represents a plane in the space.

Remark As θ in cylindrical coordinates represents the same measure as in spherical coordinates, in this example, $\theta = \frac{\pi}{4}$ in spherical coordinates has the same graph y = x.

Example (3) : Describe the graph $\phi = \frac{\pi}{6}$ in spherical coordinates.

Solution: As ρ and θ can take any valid values, the graph of $\phi = \frac{\pi}{6}$ consists of all the points in the space whose ϕ value is $\frac{\pi}{6}$, and so it is a (two penning) cone with its vertex at the origin, and with its axis being the z-axis.

One can also use algebraic techniques to see what the graph is like. Apply the formula $r = z \tan \phi$ and $r^2 = x^2 + y^2$, and substitute ϕ by $\frac{\pi}{6}$ (knowing that $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$). This yields the equation for the graph

$$x^2 + y^2 = \frac{z^2}{3}.$$

Therefore, the graph can be obtained from the straight line $z = \sqrt{3}x$ on the xz-plane by rotating this line about the z-axis.