Operations involving 3D vectors

Example: Given $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}$ and $\mathbf{b}=5 \mathbf{i}+3 \mathbf{j}-7 \mathbf{k}$, compute $2 \mathbf{a}+\mathbf{b}, 3 \mathbf{a}-2 \mathbf{b}, \mathbf{a} \cdot \mathbf{b},|\mathbf{a}-\mathbf{b}|$, and $\mathbf{a} /|\mathbf{a}|$.
Solution: Then $\mathbf{a}=(2,-3,5)$ and $\mathbf{b}=(5,3,-7)$.

$$
\begin{aligned}
2 \mathbf{a}+\mathbf{b} & =(4,-6,10)+(5,3,-7)=(9,-3,3) \\
3 \mathbf{a}-2 \mathbf{b} & =(6,-9,15)-(10,6,-14)=(-4,-15,29) \\
\mathbf{a} \cdot \mathbf{b} & =(2)(5)+(-3)(3)+(5)(-7)=10-9-35=-34 \\
|\mathbf{a}-\mathbf{b}| & =|(2-5,-3-3,5-(-7))|=\sqrt{9+36+144}=\sqrt{189} \\
\mathbf{a} /|\mathbf{a}| & =(2,-3,5) / \sqrt{4+9+25}=\left(\frac{4}{\sqrt{38}}, \frac{-3}{\sqrt{38}}, \frac{5}{\sqrt{38}}\right) .
\end{aligned}
$$

Compute the angle between two vectors

Example: Given $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}$ and $\mathbf{b}=5 \mathbf{i}+3 \mathbf{j}-7 \mathbf{k}$, compute the angle between \mathbf{a} and \mathbf{b}.
Solution: Compute $|\mathbf{b}|=\sqrt{25+9+49}=\sqrt{83}$. From $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}| \cdot|\mathbf{b}| \cos \theta$, we have (utilizing the answers for $\mathbf{a} \cdot \mathbf{b}=-34$ and $|\mathbf{a}|=\sqrt{38}$ in the example above),

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \cdot|\mathbf{b}|}=\frac{-34}{\sqrt{38} \sqrt{83}}=\frac{-34}{\sqrt{249}} ; \text { and so } \theta=\cos ^{-1} \frac{-34}{\sqrt{249}}
$$

Compute component of a along b

Example: Given $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}$ and $\mathbf{b}=5 \mathbf{i}+3 \mathbf{j}-7 \mathbf{k}$, compute $\operatorname{Comp}_{\mathbf{a}} \mathbf{b}$ and $\mathrm{Comp}_{\mathbf{b}} \mathbf{a}$.
Solution: Recall that

$$
\operatorname{Comp}_{\mathbf{b}} \mathbf{a}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}
$$

We compute $\mathbf{a} \cdots \mathbf{b}=-34,|\mathbf{a}|=\sqrt{38}$ and $|\mathbf{b}|=\sqrt{83}$ (see examples above), and so

$$
\operatorname{Comp}_{\mathbf{b}} \mathbf{a}=\frac{-34}{\sqrt{83}} \text { and } \operatorname{Comp}_{\mathbf{a}} \mathbf{b}=\frac{-34}{\sqrt{38}} .
$$

