Determine the projection of the intersection curve of two surfaces

Example (1): Prove the projection into the $y z$-plane of the curve of intersection of the surfaces $x=1-y^{2}$ and $x=y^{2}+z^{2}$ is an ellipse.

Solution: We are to determine the equation of such a projection. As the projection is on the $y z$-plane, this equation should be one without the variable x. To find the equation of the projection, we cancel x in the system of equations (obtained by combining the equations of the two surfaces)

$$
\left\{\begin{array}{l}
x=1-y^{2} \tag{1}\\
x=y^{2}+z^{2}
\end{array}\right.
$$

to get $1-y^{2}=y^{2}+z^{2}$. With some algebra, we can rewrite this equation into

$$
2 y^{2}+z^{2}=1
$$

which is an ellipse on the $y z$-plane.

Example (2): Prove the projection into the $x z$-plane of the curve of intersection of the paraboloids $y=2 x^{2}+3 z^{2}$ and $y=5-3 x^{2}-2 z^{2}$ is a circle.

Solution: We are to determine the equation of such a projection. As the projection is on the $x z$-plane, this equation should be one without the variable y. To find the equation of the projection, we cancel y in the system of equations (obtained by combining the equations of the two surfaces)

$$
\left\{\begin{array}{l}
y=2 x^{2}+3 z^{2} \tag{2}\\
y=5-3 x^{2}-2 z^{2}
\end{array}\right.
$$

to get $2 x^{2}+3 z^{2}=5-3 x^{2}-2 z^{2}$. With some algebra, we can rewrite this equation into

$$
x^{2}+z^{2}=1
$$

which is a circle on the $x z$-plane.

