Write an equation for the surface generated by revolving a plane curve around an axis

Key idea: Use the fact that the distance from any point on a circle to the center is always equal to the distance from any point on a circle to the center.

Example (1): Write an equation for the surface generated by revolving the curve $4 x^{2}+9 y^{2}=36$ on the plane $z=0$ around the y-axis.

Solution: Let $P(x, y, z)$ be a generic point on the surface of revolution. Fix a point $Q\left(x_{1}, y, 0\right)$ on the curve with the same y-coordinate as P. Then we have

$$
\begin{equation*}
4 x_{1}^{2}+9 y^{2}=36 \tag{1}
\end{equation*}
$$

The square of the distance from Q to the y-axis is x_{1}^{2}, and the square of the distance from P to the y-axis is $x^{2}+z^{2}$. As the two distances should be the same, we have $x_{1}^{2}=x^{2}+z^{2}$. Therefore, the wanted equation can be obtained by replacing x_{1}^{2} by $x^{2}+z^{2}$ in Equation (1):

$$
4 x^{2}+9 y^{2}+4 z^{2}=36
$$

Example (2): Write an equation for the surface generated by revolving the curve $x=2 z^{2}$ on the plane $y=0$ around the x-axis.
Solution: Let $P(x, y, z)$ be a generic point on the surface of revolution. Fix a point $Q\left(x, 0, z_{1}\right)$ on the curve with the same x-coordinate as P. Then we have

$$
\begin{equation*}
x_{1}=2 z^{2} \tag{2}
\end{equation*}
$$

The square of the distance from Q to the x-axis is z_{1}^{2}, and the square of the distance from P to the x-axis is $y^{2}+z^{2}$. As the two distances should be the same, we have $z_{1}^{2}=y^{2}+z^{2}$. Therefore, the wanted equation can be obtained by replacing z_{1}^{2} by $y^{2}+z^{2}$ in Equation (2):

$$
x=4\left(y^{2}+z^{2}\right)
$$

Example (3): Write an equation for the surface generated by revolving the curve $(y-z)^{2}+z^{2}=1$ on the plane $x=0$ around the z-axis.

Solution: Let $P(x, y, z)$ be a generic point on the surface of revolution. Fix a point $Q\left(0, y_{1}, z\right)$ on the curve with the same z-coordinate as P. Then we have

$$
\begin{equation*}
\left(y_{1}-z\right)^{2}+z^{2}=1, \text { which is the same as } y_{1}^{2}-2 y_{1} z+2 z^{2}=1 \tag{3}
\end{equation*}
$$

The square of the distance from Q to the z-axis is y_{1}^{2}, and the square of the distance from P to the z-axis is $x^{2}+y^{2}$. As the two distances should be the same, we have $y_{1}^{2}=x^{2}+y^{2}$. Accordingly, $y_{1}= \pm \sqrt{x^{2}+y^{2}}$. Therefore, the wanted equation can be obtained by replacing y_{1} by $\pm \sqrt{x^{2}+y^{2}}$ in Equation (3) (it has two branches):

$$
x^{2}+y^{2} \pm 2 z \sqrt{x^{2}+y^{2}}+2 z^{2}=1
$$

