Compute the arc length of curves

Example: Compute length of arc of the curve $x=t^{2} / 2, y=\ln t, z=t \sqrt{2}$ from $t=1$ to $t=2$.
Solution: Apply the arc length formula

$$
s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

to get the answer
$s=\int_{1}^{2} \sqrt{t^{2}+\frac{1}{t^{2}}+(\sqrt{2})^{2}} d t=\int_{1}^{2} \sqrt{\frac{t^{4}+1+2 t^{2}}{t^{2}}} d t=\int_{1}^{2} \frac{t^{2}+1}{t} d t=\left[\frac{t^{2}}{2}+\ln t\right]_{1}^{2}=2+\ln 2-\frac{1}{2}=\frac{3}{2}+\ln 2$.

Compute the curvature of a curve

Example Find the curvature of a plane curve $x=t-1$ and
Solution: Apply the plane curve curvature formula

$$
\kappa(t)=\frac{\left|x^{\prime}(t) y^{\prime \prime}(t)-x^{\prime \prime}(t) y^{\prime}(t)\right|}{\left[\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}\right]^{3 / 2}} .
$$

First compute $x^{\prime}(t)=1$ and $x^{\prime \prime}(t)=0, y^{\prime}(t)=2 t+3$ and $y^{\prime \prime}(t)=2$. Then compute $\left(x^{\prime}(t)\right)^{2}+$ $\left(y^{\prime}(t)\right)^{2}=1+4 t^{2}+12 t+9=4 t^{2}+12 t+10$. When $t=2$, the curvature is

$$
\kappa(2)=\frac{|2-0|}{\left[4(2)^{2}+12(2)+10\right]^{3 / 2}}=\frac{2}{50^{3 / 2}}
$$

Search the place with maximum curvature

Example Find the point or points on the curve $y=\ln x$ at which the curvature is maximum.
Solution: Note that the domain of the function is $x>0$. First compute the curvature. As $y^{\prime}=\frac{1}{x}$ and $y^{\prime \prime}=\frac{-1}{x^{2}}$, we have

$$
\kappa(x)=\frac{\left|y^{\prime \prime}\right|}{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}=\frac{1}{x^{2}} \frac{1}{\left[1+\left(\frac{1}{x}\right)^{2}\right]^{3 / 2}}=\frac{|x|}{\left(x^{2}+1\right)^{3 / 2}}
$$

Use calculus to find the maximum of the function $\kappa(x)$. When $x>0$,

$$
\kappa^{\prime}(x)=\frac{\left(x^{2}+1\right)^{3 / 2}-\frac{3}{2}\left(x^{2}+1\right)^{1 / 2}\left(2 x^{2}\right)}{\left(x^{2}+1\right)^{3}}=\frac{\sqrt{x^{2}+1}}{\left(x^{2}+1\right)^{3}}\left(x^{2}+1-3 x^{2}\right)
$$

Therefore, $x=\frac{1}{\sqrt{2}}$ is the only critical point when $x>0$, and $\kappa^{\prime}(x)>0$ if $0<x<\frac{1}{\sqrt{2}}$ and $\kappa^{\prime}(x)<0$ when $x>\frac{1}{\sqrt{2}}$. Therefore, $\kappa(x)$ has maximum value at $x=\frac{1}{\sqrt{2}}$.

