Compute the derivative of vector functions

Example: Compute $D_{t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]$, where $\mathbf{u}(t)=\left(t, t^{2}\right)$ and $\mathbf{v}(t)=\left(t^{2},-t\right)$.
Solution (1): Apply the product rule for dot products to get

$$
\begin{aligned}
D_{t}\left[\left(t, t^{2}\right) \cdot\left(t^{2},-t\right)\right] & =D_{t}\left(t, t^{2}\right) \cdot\left(t^{2},-t\right)+\left(t, t^{2}\right) \cdot D_{t}\left(t^{2},-t\right) \\
& =(1,2 t) \cdot\left(t^{2},-t\right)+\left(t, t^{2}\right) \cdot(2 t,-1)=t^{2}-2 t^{2}+2 t^{2}-t^{2}=0 .
\end{aligned}
$$

Solution (2): First compute the dot product, then compute the derivative:

$$
D_{t}\left[\left(t, t^{2}\right) \cdot\left(t^{2},-t\right)\right]=D_{t}\left[t^{3}-t^{3}\right]=0 .
$$

Find position vectors

Example Given the acceleration vector $\mathbf{a}(t)=6 t \mathbf{i}-5 \mathbf{j}+12 t^{2} \mathbf{k}$, the initial position vector $\mathbf{r}(0)=$ $3 \mathbf{i}+4 \mathbf{j}$, and the initial velocity vector $\mathbf{v}(0)=4 \mathbf{j}-5 \mathbf{k}$, find the position vector $\mathbf{r}(t)$.
Solution: First compute the velocity vector

$$
\mathbf{v}(t)=\int_{0}^{t} \mathbf{a}(t) d t+\mathbf{v}(0)=3 t^{2} \mathbf{i}-(5 t-4) \mathbf{j}+\left(4 t^{3}-5\right) \mathbf{k} .
$$

Then compute $\mathbf{r}(t)$:

$$
\mathbf{r}(t)=\int_{0}^{t} \mathbf{v}(t)+\mathbf{r}(0)=\left(t^{3}+3\right) \mathbf{i}-\left(\frac{5 t^{2}}{2}-4 t-4\right) \mathbf{j}+\left(t^{4}-5 t\right) \mathbf{k} .
$$

Show facts on vectors

Example A point moves on a sphere centered at the origin. Show that its velocity vector is always tangent to the sphere.

Solution: Let $\mathbf{r}(t)=(x(t), y(t), z(t))$ denote the position vector of the point. Suppose the radius of the sphere is \sqrt{C}, then \mathbf{r} satisfies the equation $|\mathbf{r}|=\sqrt{C}$, or $\mathbf{r}^{2}=|\mathbf{r}|^{2}=C$. Differentiate this equation both sides to get $2 \mathbf{r}^{\prime} \cdot \mathbf{r}=0$, and so the velocity vector $\mathbf{r}^{\prime}(t)$ is always perpendicular to the position vector, which implies that the velocity vector $\mathbf{r}^{\prime}(t)$ is always tangent to the sphere.

