Show a parametric curve is lying on a surface

Example: Show that the graph of the curve $x=\sin t, y=\cos t, z=\cos 8 t$ lies on te vertical circular cylinder $x^{2}+y^{2}=1$.
Solution: Substitute the parametric equations of the curve into the left hand side of $x^{2}+y^{2}$, and apply a trigonometry identity to get

$$
x^{2}+y^{2}=\sin ^{2} t+\cos ^{2} t=1
$$

and so every point of the parametric curve satisfies the equation of the cylinder, and so the curve lies on the cylinder.

Evaluate vector functions

Example Given $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}$, find the values of $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$ at $t=\frac{\pi}{4}$.
Solution: Compute $\mathbf{r}^{\prime}(t)=-\sin t \mathbf{i}+\cos t \mathbf{j}$. Thus

$$
\mathbf{r}\left(\frac { \pi } { 4 } = \frac { \sqrt { 2 } } { 2 } \mathbf { i } + \frac { \sqrt { 2 } } { 2 } \mathbf { j } , \text { and } \mathbf { r } ^ { \prime } \left(\frac{\pi}{4}=\frac{-\sqrt{2}}{2} \mathbf{i}+\frac{\sqrt{2}}{2} \mathbf{j} .\right.\right.
$$

Find velocity and acceleration vectors

Example Given the position vector $\mathbf{r}(t)=12 t \mathbf{i}+(5 \sin 2 t) \mathbf{j}-(5 \cos 2 t) \mathbf{k}$, find its velocity and acceleration vectors and its speed at t.
Solution: They are

$$
\begin{aligned}
\text { velocity } \mathbf{v}(t) & =\mathbf{r}^{\prime}(t)=12 \mathbf{i}+(10 \cos 2 t) \mathbf{j}+(10 \sin 2 t) \mathbf{k} \\
\text { acceleration } \mathbf{a}(t) & =\mathbf{v}^{\prime}(t)=-(20 \sin 2 t) \mathbf{j}+(20 \cos 2 t) \mathbf{k} \\
\text { speed }|\mathbf{v}(t)| & =\sqrt{12^{2}+(10 \cos 2 t)^{2}+(10 \sin 2 t)^{2}}=\sqrt{144+100}=\sqrt{244}
\end{aligned}
$$

Compute the integrals of vector functions

Example Compute

$$
\int_{1}^{e}\left(\frac{1}{t} \mathbf{i}-\mathbf{j}\right) d t
$$

Solution: The answer is

$$
\int_{1}^{e}\left(\frac{1}{t} \mathbf{i}-\mathbf{j}\right) d t=[\ln |t| \mathbf{i}-t \mathbf{j}]_{1}^{e}=\mathbf{i}-(e-1) \mathbf{j} .
$$

