Determine the relationship of a line and a plane (in parametric equations)

Example: Given a line L and a plane \mathcal{P} :

$$
\begin{aligned}
L: & x=7-6 r, y=3+3 r, z=28+3 r \\
\mathcal{P}: & x=7 s+3 t, y=4 s-2 t, z=-5 s+6 t .
\end{aligned}
$$

Determine if L and \mathcal{P} intersect or are parallel.
Solution: The normal vector of \mathcal{P} is $\mathbf{n}=(7,4,-5) \times(3,-2,6)=(24-10,-(42+15),-14-12)=$ $(14,-57,-26)$, and the line L is parallel to $\mathbf{v}=(-6,3,3)$. As the dot product $\mathbf{n} \cdot \mathbf{v}=(-6)(14)+$ $(-57)(3)+(-26)(3) \neq 0, L$ and \mathcal{P} are not parallel to each other.

We need to see where the two objects intersect. Substitute the parametric equations of L into the equations of \mathcal{P} to get:

$$
\left\{\begin{array} { l }
{ 7 - 6 r = 7 s + 3 t } \\
{ 3 + 3 r = 4 s + 2 t } \\
{ 2 8 + 3 r = - 5 s + 6 t }
\end{array} \Longrightarrow \left\{\begin{array}{l}
7 s+3 t+6 r=7 \\
4 s+2 t-3 r=3 \\
-5 s+6 t-3 r=28
\end{array} \Longrightarrow t=4, s=-1, \text { and } r=\frac{1}{3} .\right.\right.
$$

Thus the point of intersection is

$$
x=7-\frac{6}{3}=5, y=3+\frac{3}{3}=4, z=28+\frac{3}{3}=29 .
$$

Determine the relationship of two planes (in parametric equations)

Example: Given two planes \mathcal{P}_{1} and \mathcal{P}_{2} :

$$
\begin{array}{ll}
\mathcal{P}_{1}: & x=7-s+t, y=3+s, z=9+2 s-t \\
\mathcal{P}_{2}: & x=5+2 t, y=3+2 s+t, z=4-s-t .
\end{array}
$$

Determine the relationship between them.
Solution: The planes have normal vectors $\mathbf{a}=(-1,1,2) \times(1,0,-1)=(-1-0,-(1-2), 0-1)=$ $(-1,1,-1)$, and $\mathbf{b}=(0,2,-1) \times(2,1,-1)=(-2-(-1),-(0+2), 0-4)=(-1,-2,-4)$, respectively. As a cannot be a scalar product of \mathbf{b} (try to solve $c \mathbf{a}=\mathbf{b}$ to convince yourself), the two planes are not parallel, and so they are not equal either.

The consine of the angle θ between the two planes can be found as

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \cdot|\mathbf{b}|}=\frac{(-1)(-1)+(1)(-2)+(-1)(-4)}{\sqrt{3} \cdot \sqrt{21}}=\frac{3}{3 \sqrt{7}}=\frac{1}{\sqrt{7}}, \text { and so } \theta=\cos ^{-1} \frac{1}{\sqrt{7}} \text {. }
$$

