Write equations of a line as intersections of two planes

Example: Write the parametric and sysmetric equations of the line of intersection of the planes $2 x-y+z=5$ and $x+y-z=1$.

Solution: The planes have normal vectors $\mathbf{a}=(2,-1,1)$ and $\mathbf{b}=(1,1,-1)$, respectively. Let L denote the line of intersection. Then $\mathbf{v}=\mathbf{a} \times \mathbf{b}=(1-1,-(-2-1), 2-(-1))=(0,3,3)$ is parallel to L. We only need to find a point P on L.

To find P, solved the system of equations of the planes:

$$
2 x-y+z=5 \text { and } x+y-z=1 .
$$

We consider P to be the point of L on the plane $z=0$. Thus substitute $z=0$ in the ssytem above to get

$$
2 x-y=5 \text { and } x+y=1 \Longrightarrow x=2, y=-1
$$

Hence we get $P(2,-1,0)$, and so the equations of the line are

$$
\left\{\begin{array}{l}
x=2 \\
y=-1+3 t \quad \text { and } x=2, y+1=z \\
z=3 t
\end{array}\right.
$$

