Check continuity of functions and determine discontinuities

Facts:

(1) A function $f(x)$ is continuous at a point a if a is in the domain of $f(x)$ (that is, $f(a)$ exists as a number) and if $\lim _{x \rightarrow a} f(x)=f(a)$. If $f(x)$ is continuous at every point of an interval I, then $f(x)$ is a continuous function over I.
(2) A number a is a discontinuity of a function $f(x)$ if one of the following occurs
(i) a is not in the domain of $f(x)$, or
(ii) if a is in the domain of $f(x)$ but $\lim _{x \rightarrow a} f(x)$ does not exist, or
indent (iii) if a is in the domain of $f(x)$ and $\lim _{x \rightarrow a} f(x)=L$ exists but $f(a) \neq L$.
(3) Members in the family of continuous functions:
(i) Polynomial, rational functions, power functions, trigonometry functions, logarithm and exponential functions are all continuous in their domains.
(ii) If both $f(x)$ and $g(x)$ are continuous at $x=a$, then each of $f(x)+g(x),(f(x)-g(x)$, $f(x) g(x)$ and (when $g(a) \neq 0) f(x) / g(x)$ are all continuous at $x=a$.
(iii) If $g(x)$ is continuous at $x=a$ and $f(x)$ is continuous at $x=g(a)$, then $f \circ g$ is continuous at $x=a$.
(4) A point a is a removable discontinuity of a function $f(x)$ if $f(x)$ is not continuous at a but $\lim _{x \rightarrow a} f(x)=L$ exists as a finite number. In this case, redefine $f(a)=L$ will make the new function continuous at $x=a$.

Example 1 Apply limit laws to show that the function $h(z)=\sqrt{(z-1)(3-z)}$ is continuous on the interval $[1,3]$.
Solution: We observe that $[1,3]$ is the domain of the function $h(z)=\sqrt{(z-1)(3-z)}$. For any point a in $[1,3]$, by the limit laws (11) and (12) (see "Calculate the limit of a function: Apply Limit Laws and Properties"), we have

$$
\lim _{z \rightarrow a} \sqrt{(z-1)(3-z)}=\sqrt{\lim _{z \rightarrow a}(z-1)(3-z)}=\sqrt{(a-1)(3-a)}=h(a)
$$

Thus $\lim _{z \rightarrow a} h(z)=h(a)$, and so $h(z)$ is continuous at a. Since a is an arbitrary point in $[1,3], h(z)$ is continuous in $[1,3]$.

Example 2 Apply limit laws to show that the function $f(x)=\frac{x}{\cos x}$ is continuous on the
interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
Solution: We observe that $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is in side the domain of the function $f(x)=\frac{x}{\cos x}$. For any point a in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, by the limit law (4) (see "Calculate the limit of a function: Apply Limit Laws and Properties"), we have

$$
\lim _{x \rightarrow a} \frac{x}{\cos x}=\frac{\lim _{x \rightarrow a} x}{\lim _{x \rightarrow a} \cos x}=\frac{a}{\cos a}=f(a)
$$

Thus $\lim _{x \rightarrow a} f(x)=h(a)$, and so $f(x)$ is continuous at a. Since a is an arbitrary point in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), f(x)$ is continuous in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Example 3 Determine where the function $f(x)=x^{2}+\frac{1}{x}$ is continuous.
Solution: Note that $f(x)$ is the sum of a polynomial x^{2} and a rational function $\frac{1}{x}$. Therefore, the domain of $f(x)$ is $(-\infty, 0)$ and $(0, \infty)$. From Facts (3) above, we conclude that $f(x)$ in continuous at every point in $(-\infty, 0)$ and $(0, \infty)$.

Example 4 Determine where the function $f(x)=\frac{3}{x^{2}-x}$ is continuous.
Solution: Note that $f(x)$ is a rational function $\frac{1}{x}$. Therefore, the domain of $f(x)$ is $(-\infty, 0)$, $(0,1)$ and $(1, \infty)$. From Facts (3) above, we conclude that $f(x)$ in continuous at every point in $(-\infty, 0),(0,1)$ and $(1, \infty)$.

Example 5 Find discontinuities of the function

$$
f(x)=\frac{1}{1-|x|}
$$

and tell whether each of them is a removable discontinuity.
Solution: Observe that $x=1$ and $x=-1$ are the only points not in the domain of $f(x)$, and so these are the only discontinuities of $f(x)$. As both $\lim _{x \rightarrow 1} \frac{1}{1-|x|}$ and $\lim _{x \rightarrow-1} \frac{1}{1-|x|}$ do not exist (as finite numbers), neither of these two points are removable.

Example 6 Find discontinuities of the function

$$
f(x)=\left\{\begin{array}{lc}
x+1 & \text { if } x<1 \\
3-x & \text { if } x>1
\end{array}\right.
$$

and tell whether each of them is a removable discontinuity.
Solution: Observe that $x=1$ is the only point not in the domain of $f(x)$, and so this is the only discontinuity of $f(x)$. As

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 3-x=2 \text { and } \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x+1=2,
$$

we conclude that $\lim x \rightarrow 1 f(x)=2$ and so $x=1$ is a removable discontinuity of $f(x)$.

Example 7 Find a value of c so that the function

$$
f(x)= \begin{cases}2 x+c & \text { if } x \leq 3, \\ 2 c-x & \text { if } x>3\end{cases}
$$

is continuous.
Solution: As polynomials are continuous, we observe that $x=3$ is the only problematic point. Compute the side limits, we obtain

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} 2 c-x=2 c-3 \text { and } \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} 2 x+c=6+c .
$$

In order for $f(x)$ to be continuous at $x=3$, the limit $\lim x \rightarrow 3 f(x)$ must exist, and so both side limits must be the same. Thus we equal the two side limits: $2 c-3=6+c$ to get $c=9$. Therefore, $c=9$ is the desired.

