## Compute limits: using the Squeeze Law

The Squeeze Law Suppose that $f(x) \leq g(x) \leq h(x)$ for all $x \neq a$ in some neighborhood of $a$ and laws that

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x) .
$$

Then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Example 1 Compute $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x^{2}}$.
Solution: To apply the Squeeze Law, we view $a=0$ and

$$
g(x)=x^{2} \sin \frac{1}{x^{2}}
$$

The key idea is to find the appropriate $f(x)$ and $h(x)$. Note that $-1 \leq \sin \theta \leq 1$, for any $\theta$ (in this occasion $\theta=\frac{1}{x^{2}}$ ). Therefore, we always have, when $x \neq 0$,

$$
-x^{2} \leq x^{2} \sin \frac{1}{x^{2}} \leq x^{2}
$$

Choose $f(x)=-x^{2}$ and $h(x)=x^{2}$, and note that both $\lim _{x \rightarrow 0}-x^{2}=0=\lim _{x \rightarrow 0} x^{2}$. Therefore, by Squeeze Law,

$$
\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x^{2}}=0
$$

Example 2 Compute $\lim _{x \rightarrow 0} \sqrt[3]{x} \sin \frac{1}{x}$.
Solution: To apply the Squeeze Law, we view $a=0$ and

$$
g(x)=\sqrt[3]{x} \sin \frac{1}{x}
$$

The key idea is to find the appropriate $f(x)$ and $h(x)$. Note that $-1 \leq \sin \theta \leq 1$, for any $\theta$ (in this occasion $\theta=\frac{1}{x}$ ). Therefore, we always have, when $x \neq 0$, (absolute values must be added so that when this positive amount multiplied to both sides of an inequality, the inequality sign will not be reversed).

$$
-|\sqrt[3]{x}| \leq \sqrt[3]{x} \sin \frac{1}{x} \leq|\sqrt[3]{x}|
$$

Choose $f(x)=-|\sqrt[3]{x}|$ and $h(x)=|\sqrt[3]{x}|$, and note that both $\lim _{x \rightarrow 0}-|\sqrt[3]{x}|=0=\lim _{x \rightarrow 0}|\sqrt[3]{x}|$. Therefore, by Squeeze Law,

$$
\lim _{x \rightarrow 0} \sqrt[3]{x} \sin \frac{1}{x}=0
$$

