Compute a limit by using the basic trigonometric limit

The basic trigonometric limit

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1.$$

Using the basic limit, we can also have another form of the basic limit.

$$\lim_{\theta \to 0} \frac{1}{\frac{\sin \theta}{\theta}} = \frac{1}{\lim_{\theta \to 0} \frac{\sin \theta}{\theta}} = \frac{1}{1} = 1.$$

Example 1 Compute $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

Solution: The key idea is to convert the limit into one that the basic limit can be applied. From trigonometry, we recall that $\sin x$ and $\cos x$ are related by an identity $\sin^2 x + \cos^2 x = 1$. Therefore, use limit laws and $\lim_{x\to 0} \cos x = 1$ to get

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \frac{1 + \cos x}{1 + \cos x}$$

$$= \lim_{\theta \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x^2} \frac{1}{1 + \cos x} = \lim_{\theta \to 0} \frac{1 - \cos^2 x}{x^2} \frac{1}{1 + \cos x}$$

$$= \lim_{\theta \to 0} \frac{\sin^2 x}{x^2} \frac{1}{1 + \cos x} = \lim_{\theta \to 0} \frac{\sin x}{x} \lim_{\theta \to 0} \frac{1}{x} \lim_{\theta \to 0} \frac{1}{1 + \cos x}$$

$$= 1 \cdot 1 \cdot \frac{1}{1 + 1} = \frac{1}{2}.$$

Example 2 Compute $\lim_{x\to 0} \frac{\sin(ax)}{ax}$, where $a\neq 0$ is a real constant.

Solution: The key idea is to convert the limit into one that the basic limit can be applied. Let u = ax. Then when $x \to 0$, $u = ax \to 0$. Therefore,

$$\lim_{x \to 0} \frac{\sin(ax)}{ax} = \lim_{u \to 0} \frac{\sin(u)}{u} = 1.$$

Example 3 Compute $\lim_{x\to 0} \frac{\sin(2x^2)}{x^2}$.

Solution: The key idea is to convert the limit into one that the basic limit can be applied. Let $u=2x^2$. Then $x^2=\frac{u}{2}$, and when $x\to 0$, $u=2x^2\to 0$. Therefore,

$$\lim_{x \to 0} \frac{\sin(2x^2)}{x^2} = \lim_{u \to 0} \frac{2\sin(u)}{u} = \lim_{u \to 0} 2\frac{\sin(u)}{u} = 2.$$

Example 4 Compute $\lim_{x\to 0} \frac{\tan(3x)}{\tan(5x)}$.

Solution: The key idea is to convert the limit into one that the basic limit can be applied. To do that, use $\tan \theta = \frac{\sin \theta}{\cos \theta}$ (here $\theta = 3x$ and 5x, respectively) to get the sine functions out from the tangent functions. Thus, apply Example 2 above with a = 3 and a = 5, respectively, and use $\lim_{x\to 0} \cos ax = 1$ to get

$$\lim_{x \to 0} \frac{\tan(3x)}{\tan(5x)} = \lim_{x \to 0} \frac{\sin(3x)}{\cos(3x)} \frac{\cos(5x)}{\sin(5x)}$$

$$= \lim_{x \to 0} \frac{\sin(3x)}{3x} \frac{3x}{\cos(3x)} \frac{\cos(5x)}{5x} \frac{5x}{\sin(5x)}$$

$$= \lim_{x \to 0} \frac{\sin(3x)}{3x} \lim_{x \to 0} \left[\frac{3}{\cos(3x)} \frac{\cos(5x)}{5} \right] \lim_{x \to 0} \frac{5x}{\sin(5x)}$$

$$= 1 \cdot \frac{3}{5} \cdot 1 = \frac{3}{5}.$$

Example 5 Compute $\lim_{x\to 0} x \csc x \sec x$.

Solution: The key idea is to convert the limit into one that the basic limit can be applied. To do that, use $\csc x \frac{1}{\sin x}$ to get the sine function out from the co secant function. Thus, use $\lim_{x\to 0} \sec x = 1$ to get

$$\lim_{x \to 0} x \csc x \sec x = \lim_{x \to 0} \frac{x}{\sin x} \sec x = \lim_{x \to 0} \frac{x}{\sin x} \lim_{x \to 0} \sec x = 1.$$