Compute a limit by using the basic trigonometric limit

The basic trigonometric limit

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 .
$$

Using the basic limit, we can also have another form of the basic limit.

$$
\lim _{\theta \rightarrow 0} \frac{1}{\frac{\sin \theta}{\theta}}=\frac{1}{\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}}=\frac{1}{1}=1 .
$$

Example 1 Compute $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.
Solution: The key idea is to convert the limit into one that the basic limit can be applied. From trigonometry, we recall that $\sin x$ and $\cos x$ are related by an identity $\sin ^{2} x+\cos ^{2} x=$ 1. Therefore, use limit laws and $\lim _{x \rightarrow 0} \cos x=1$ to get

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} & =\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \frac{1+\cos x}{1+\cos x} \\
& =\lim _{\theta \rightarrow 0} \frac{(1-\cos x)(1+\cos x)}{x^{2}} \frac{1}{1+\cos x}=\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2} x}{x^{2}} \frac{1}{1+\cos x} \\
& =\lim _{\theta \rightarrow 0} \frac{\sin ^{2} x}{x^{2}} \frac{1}{1+\cos x}=\lim _{\theta \rightarrow 0} \frac{\sin x}{x} \lim _{\theta \rightarrow 0} \frac{\sin x}{x} \lim _{\theta \rightarrow 0} \frac{1}{1+\cos x} \\
& =1 \cdot 1 \cdot \frac{1}{1+1}=\frac{1}{2} .
\end{aligned}
$$

Example 2 Compute $\lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}$, where $a \neq 0$ is a real constant.
Solution: The key idea is to convert the limit into one that the basic limit can be applied.
Let $u=a x$. Then when $x \rightarrow 0, u=a x \rightarrow 0$. Therefore,

$$
\lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}=\lim _{u \rightarrow 0} \frac{\sin (u)}{u}=1 .
$$

Example 3 Compute $\lim _{x \rightarrow 0} \frac{\sin \left(2 x^{2}\right)}{x^{2}}$.
Solution: The key idea is to convert the limit into one that the basic limit can be applied. Let $u=2 x^{2}$. Then $x^{2}=\frac{u}{2}$, and when $x \rightarrow 0, u=2 x^{2} \rightarrow 0$. Therefore,

$$
\lim _{x \rightarrow 0} \frac{\sin \left(2 x^{2}\right)}{x^{2}}=\lim _{u \rightarrow 0} \frac{2 \sin (u)}{u}=\lim _{u \rightarrow 0} 2 \frac{\sin (u)}{u}=2 .
$$

Example 4 Compute $\lim _{x \rightarrow 0} \frac{\tan (3 x)}{\tan (5 x)}$.
Solution: The key idea is to convert the limit into one that the basic limit can be applied. To do that, use $\tan \theta=\frac{\sin \theta}{\cos \theta}$ (here $\theta=3 x$ and $5 x$, respectively) to get the sine functions out from the tangent functions. Thus, apply Example 2 above with $a=3$ and $a=5$, respectively, and use $\lim _{x \rightarrow 0} \cos a x=1$ to get

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (3 x)}{\tan (5 x)} & =\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\cos (3 x)} \frac{\cos (5 x)}{\sin (5 x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \frac{3 x}{\cos (3 x)} \frac{\cos (5 x)}{5 x} \frac{5 x}{\sin (5 x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \lim _{x \rightarrow 0}\left[\frac{3}{\cos (3 x)} \frac{\cos (5 x)}{5}\right] \lim _{x \rightarrow 0} \frac{5 x}{\sin (5 x)} \\
& =1 \cdot \frac{3}{5} \cdot 1=\frac{3}{5} .
\end{aligned}
$$

Example 5 Compute $\lim _{x \rightarrow 0} x \csc x \sec x$.
Solution: The key idea is to convert the limit into one that the basic limit can be applied. To do that, use $\csc x \frac{1}{\sin x}$ to get the sine function out from the co secant function. Thus, use $\lim _{x \rightarrow 0} \sec x=1$ to get

$$
\lim _{x \rightarrow 0} x \csc x \sec x=\lim _{x \rightarrow 0} \frac{x}{\sin x} \sec x=\lim _{x \rightarrow 0} \frac{x}{\sin x} \lim _{x \rightarrow 0} \sec x=1 .
$$

