Compute the derivative by definition: The four step procedure

Given a function $f(x)$, the definition of $f^{\prime}(x)$, the derivative of $f(x)$, is

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided the limit exists. The derivative function $f^{\prime}(x)$ is sometimes also called a slopepredictor function. The following is a four-step process to compute $f^{\prime}(x)$ by definition. Input: a function $f(x)$
Step 1 Write $f(x+h)$ and $f(x)$.
Step 2 Compute $f(x+h)-f(x)$. Combine like terms. If h is a common factor of the terms, factor the expression by removing the common factor h.
Step 3 Simply $\frac{f(x+h)-f(x)}{h}$. As $h \rightarrow 0$ in the last step, we must cancel the zero factor h in the denominator in Step 3.
Step 4 Compute $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ by letting $h \rightarrow 0$ in the simplified expression.

Example 1 Let $f(x)=a x^{2}+b x+c$. Compute $f^{\prime}(x)$ by the definition (that is, use the four step process).

Solution: Step 1, write
$f(x+h)=a(x+h)^{2}+b(x+h)+c=a\left(x^{2}+2 x h+h^{2}\right)+b x+b h+c=a x^{2}+2 a x h+a h^{2}+b x+b h+c$.
Step 2: Use algebra to single out the factor h.
$f(x+h)-f(x)=\left(a x^{2}+2 a x h+a h^{2}+b x+b h+c\right)-\left(a x^{2}+b x+c\right)=2 a x h+a h^{2}+b h=h(2 a x+a h+b)$.
Step 3: Cancel the zero factor h is the most important thing in this step.

$$
\frac{f(x+h)-f(x)}{h}=\frac{h(2 a x+a h+b)}{h}=2 a x+a h+b .
$$

Step 4: Let $h \rightarrow 0$ in the resulted expression in Step 3.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} 2 a x+a h+b=2 a x+0+b=2 a x+b .
$$

Example 2 Let $f(x)=\frac{1}{x+1}$. Compute $f^{\prime}(x)$ by the definition (that is, use the four step process).

Solution: Step 1, write

$$
f(x+h)=\frac{1}{(x+h)+1}=\frac{1}{x+h+1} .
$$

Step 2: Use algebra to single out the factor h.

$$
f(x+h)-f(x)=\frac{1}{x+h+1}-\frac{1}{x+1}=\frac{(x+1)-(x+h+1)}{(x+h+1)(x+1)}=\frac{h}{(x+h+1)(x+1)}
$$

Step 3: Cancel the zero factor h is the most important in this step.
$\frac{f(x+h)-f(x)}{h}=\frac{1}{h}\left[\frac{1}{x+h+1}-\frac{1}{x+1}\right]=\frac{1}{h}\left[\frac{-h}{(x+h+1)(x+1)}\right]=\frac{-1}{(x+h+1)(x+1)}$.
Step 4: Let $h \rightarrow 0$ in the resulted expression in Step 3.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{-1}{(x+h+1)(x+1)}=\frac{-1}{(x+0+1)(x+1)}=\frac{-1}{(x+1)^{2}}
$$

Example 3 Let $f(x)=\sqrt{2 x+5}$. Compute $f^{\prime}(x)$ by the definition (that is, use the four step process).

Solution: Step 1, write

$$
f(x+h)=\sqrt{2(x+h)+5}=\sqrt{2 x+2 h+5}
$$

Step 2: Use algebra to single out the factor h. Here we need the identity $(A+B)(A-B)=$ $A^{2}-B^{2}$ to get rid of the square root so that h can be factored out.
$f(x+h)-f(x)=\sqrt{2 x+2 h+5}-\sqrt{2 x+5}=\frac{(2 x+2 h+5)-(2 x+5)}{\sqrt{2 x+2 h+5}+\sqrt{2 x+5}}=\frac{2 h}{\sqrt{2 x+2 h+5}+\sqrt{2 x+5}}$.
Step 3: Cancel the zero factor h is the most important thing in this step.

$$
\frac{f(x+h)-f(x)}{h}=\frac{1}{h}\left[\frac{2 h}{\sqrt{2 x+2 h+5}+\sqrt{2 x+5}}\right]=\frac{2}{\sqrt{2 x+2 h+5}+\sqrt{2 x+5}} .
$$

Step 4: Let $h \rightarrow 0$ in the resulted expression in Step 3.
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{2}{\sqrt{2 x+2 h+5}+\sqrt{2 x+5}}=\frac{2}{\sqrt{2 x+0+5}+\sqrt{2 x+5}}=\frac{1}{\sqrt{2 x+5}}$.

Find an equation of the tangent line (using the 4 -step procedure to find slopes)

Given a curve $y=f(x)$ and a point $\left(x_{0}, y_{0}\right)$ on it, an equation of the line tangent to the curve $y=f(x)$ at the point $\left(x_{0}, y_{0}\right)$ is

$$
y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right),
$$

provided the $f^{\prime}\left(x_{0}\right)$ exists. (Therefore, $f^{\prime}\left(x_{0}\right)$ is the slope of the tangent line at $\left.\left(x_{0}, y_{0}\right)\right)$.

Example 1 Let $f(x)=4 x^{2}+5 x+6$. Find an equation of the line tangent to the curve $y=f(x)$ at $(1,15)$. Compute $f^{\prime}(1)$ by the definition (that is, use the four step process).

Solution: Step 1, write

$$
f(1+h)=4(1+h)^{2}+5(1+h)+6=4\left(1+2 h+h^{2}\right)+5+5 h+6=15+13 h+4 h^{2} .
$$

Step 2: Use algebra to single out the factor h.

$$
f(1+h)-f(1)=\left(15+13 h+4 h^{2}\right)-15=13 h+4 h^{2}=h(13+4 h) .
$$

Step 3: Cancel the zero factor h is the most important thing in this step.

$$
\frac{f(x+h)-f(x)}{h}=\frac{h(13+4 h)}{h}=13+4 h .
$$

Step 4: Let $h \rightarrow 0$ in the resulted expression in Step 3.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} 13+4 h=13+0=13 .
$$

Therefore, the answer is

$$
y-15=13(x-1) .
$$

Example 2 Let $f(x)=\frac{1}{x+1}$. Find an equation of the line tangent to the curve $y=f(x)$ at the point where $x=2$. Compute $f^{\prime}(2)$ by the definition (that is, use the four step process).

Solution: Step 1, write

$$
f(2+h)=\frac{1}{(2+h)+1}=\frac{1}{2+h+1} .
$$

Step 2: Use algebra to single out the factor h.

$$
f(2+h)-f(2)=\frac{1}{2+h+1}-\frac{1}{2+1}=\frac{(2+1)-(2+h+1)}{(2+h+1)(2+1)}=\frac{-h}{(3+h)(3)}
$$

Step 3: Cancel the zero factor h is the most important in this step.

$$
\frac{f(2+h)-f(2)}{h}=\frac{1}{h}\left[\frac{1}{3+h}-\frac{1}{3}\right]=\frac{1}{h}\left[\frac{-h}{(3+h)(3)}\right]=\frac{-1}{(3+h)(3)}
$$

Step 4: Let $h \rightarrow 0$ in the resulted expression in Step 3.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{-1}{(3+h)(3)}=\frac{-1}{(3+0)(3)}=\frac{-1}{9}
$$

Therefore, the slope $m=-\frac{1}{9}$. As $y_{0}=f(2)=\frac{1}{3}$, the answer is

$$
y-\frac{1}{3}=-\frac{1}{9}(x-2)
$$

Example 3 Let $f(x)=\sqrt{2 x+5}$. Find an equation of the line tangent to the curve $y=f(x)$ at the point where $x=2$. Compute $f^{\prime}(2)$ by the definition (that is, use the four step process).

Solution: Step 1, write

$$
f(2+h)=\sqrt{2(2+h)+5}=\sqrt{4+2 h+5}=\sqrt{9+2 h}
$$

Step 2: Use algebra to single out the factor h. Here we need the identity $(A+B)(A-B)=$ $A^{2}-B^{2}$ to get rid of the square root so that h can be factored out.

$$
f(x+h)-f(x)=\sqrt{9+2 h}-\sqrt{9}=\frac{(9+2 h)-3}{\sqrt{9+2 h}+3}=\frac{2 h}{\sqrt{9+2 h}+3} .
$$

Step 3: Cancel the zero factor h is the most important thing in this step.

$$
\frac{f(x+h)-f(x)}{h}=\frac{1}{h}\left[\frac{2 h}{\sqrt{9+2 h}+3}\right]=\frac{2}{\sqrt{9+2 h}+3} .
$$

Step 4: Let $h \rightarrow 0$ in the resulted expression in Step 3.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{2}{\sqrt{9+2 h}+3}=\frac{2}{\sqrt{9+0}+3}=\frac{2}{3+3}=\frac{1}{3}
$$

Therefore, the slope $m=\frac{1}{3}$. As $y_{0}=f(2)=3$, the answer is

$$
y-3=\frac{1}{3}(x-2) .
$$

Example 4: Let $f(x)=\frac{2}{x-1}$ be given.
(a) Use definition of the derivative to find $f^{\prime}(x)$.
(b) Find an equation of the line tangent to the curve $y=f(x)$ at the point where $x=3$.

Solution: (a) Step 1: Compute

$$
f(x+h)=\frac{2}{(x+h)-1}=\frac{2}{x+h-1} .
$$

Step 2: Compute the difference $f(x+h)-f(x)$. (We must have h as a common factor in the result).

$$
\begin{aligned}
f(x+h)-f(x) & =\frac{2}{x+h-1}-\frac{2}{x-1}=2 \frac{x-1}{(x-1)(x+h-1)}-2 \frac{x+h-1}{(x-1)(x+h-1)} \\
& =2 \frac{(x-1)-(x+h-1)}{(x-1)(x+h-1)}=2 \frac{-h}{(x-1)(x+h-1)}
\end{aligned}
$$

Step 3: Use the result in Step 2 to form and simplify the ratio (the denomination h must be cancelled with the numerator h).

$$
\frac{f(x+h)-f(x)}{h}=2 \frac{-h}{(x-1)(x+h-1)} \frac{1}{h}=2 \frac{-1}{(x-1)(x+h-1)} .
$$

Step 4: Find the answer by letting $h \rightarrow 0$:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} 2 \frac{-1}{(x-1)(x+h-1)}=2 \frac{-1}{(x-1)(x+0-1)}=\frac{-2}{(x-1)^{2}}$.
(b) First compute $f(3)=2 /(3-1)=1$. At the point $(3,1)$, the slope of tangent line is $f^{\prime}(3)=(-2) /(3-1)^{2}=-1 / 2$. Therefore an equation of the tangent line is

$$
y-1=\frac{-1}{2}(x-3)
$$

Example 5: Let $f(x)=\frac{1}{\sqrt{x+2}}$ be given.
(a) Use definition of the derivative to find $f^{\prime}(x)$.
(b) Find an equation of the line tangent to the curve $y=f(x)$ at the point where $x=-1$.

Solution: (a) Step 1: Compute

$$
f(x+h)=\frac{1}{\sqrt{(x+h)+2}}=\frac{1}{\sqrt{x+h+2}} .
$$

Step 2: Compute the difference $f(x+h)-f(x)$. (We must have h as a common factor in the result). We shall utilizes the formula $(A+B)(A-B)=A^{2}-B^{2}$ (which, as we have seen, is a useful tool to deal with square roots).

$$
\begin{aligned}
f(x+h)-f(x) & =\frac{1}{\sqrt{x+h+2}}-\frac{1}{\sqrt{x+2}}=\frac{\sqrt{x+2}}{\sqrt{x+h+2} \sqrt{x+2}}-\frac{\sqrt{x+h+2}}{\sqrt{x+h+2} \sqrt{x+2}} \\
& =\frac{\sqrt{x+2}-\sqrt{x+h+2}}{\sqrt{x+h+2} \sqrt{x+2}}=\frac{\sqrt{x+2}-\sqrt{x+h+2}}{\sqrt{x+h+2} \sqrt{x+2}} \frac{\sqrt{x+2}+\sqrt{x+h+2}}{\sqrt{x+2}+\sqrt{x+h+2}} \\
& =\frac{(x+2)-(x+h+2)}{\sqrt{x+h+2} \sqrt{x+2}(\sqrt{x+2}+\sqrt{x+h+2})} \\
& =\frac{-h}{\sqrt{x+h+2} \sqrt{x+2}(\sqrt{x+2}+\sqrt{x+h+2})}
\end{aligned}
$$

Step 3: Use the result in Step 2 to form and simplify the ratio (the denomination h must be cancelled with the numerator h).

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{1}{h} \frac{-h}{\sqrt{x+h+2} \sqrt{x+2}(\sqrt{x+2}+\sqrt{x+h+2})} \\
& =\frac{-1}{\sqrt{x+h+2} \sqrt{x+2}(\sqrt{x+2}+\sqrt{x+h+2})}
\end{aligned}
$$

Step 4: Find the answer by letting $h \rightarrow 0$:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{\sqrt{x+h+2} \sqrt{x+2}(\sqrt{x+2}+\sqrt{x+h+2})} \\
& =\frac{-1}{\sqrt{x+0+2} \sqrt{x+2}(\sqrt{x+2}+\sqrt{x+0+2})}=\frac{-1}{2(x+2) \sqrt{x+2}} .
\end{aligned}
$$

(b) First compute $f(-1)=\frac{1}{\sqrt{(-1)+2}}=1$. At the point $(-1,1)$, the slope of tangent line is $f^{\prime}(-1)=\frac{-1}{2(-1+2) \sqrt{-1+2}}=\frac{-1}{2}$. Therefore an equation of the tangent line is

$$
y-1=\frac{-1}{2}(x-(-1))
$$

