Calculate the limit of a function: cancelling zero factors before evaluating for the $\frac{0}{0}$ type limits, and other hard to decide situations

When facing a $\frac{0}{0}$ type limit, one must try to get rid of the zero factor(s) before evaluating the limit. In any case, $\frac{0}{0}$ is always a wrong answer.

Example 1 Find $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}$.
Solution: When $x \rightarrow 1$, both $x-1$ and $x^{2}-1$ go to 0 , and so this is a $\frac{0}{0}$ type limit. Factor $x^{2}-1=(x-1)(x+1)$. Then cancel the zero factors before evaluating the limit:

$$
\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{2} .
$$

Example 2 Find $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+9}-3}{x^{2}}$.
Solution: When $x \rightarrow 0$, both $\sqrt{x^{2}+9}-3$ and x^{2} go to 0 , and so this is a $\frac{0}{0}$ type limit.
In order to cancel the zero factors, we need to "free" $x^{2}+9$ out of the radical. Apply the algebraic identity $(A+B)(A-B)=A^{2}-B^{2}$ with $A=\sqrt{x^{2}+9}$ and $B=3$ to get

$$
\sqrt{x^{2}+9}-3=\frac{\left(\sqrt{x^{2}+9}-3\right)\left(\sqrt{x^{2}+9}+3\right.}{\sqrt{x^{2}+9}+3}=\frac{x^{2}+9-9}{\sqrt{x^{2}+9}-3}=\frac{x^{2}}{\sqrt{x^{2}+9}-3}
$$

Therefore,

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+9}-3}{x^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}\left(\sqrt{x^{2}+9}+3\right)}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x^{2}+9}+3}=\frac{1}{6} .
$$

Example 3 Find $\lim _{x \rightarrow 1}\left[\frac{1}{x-1}-\frac{2}{x^{2}-1}\right]$.
Solution: When $x \rightarrow 1$, both $x-1$ and $x^{2}-1$ go to 0 , and so this is a $\infty-\infty$ type limit. One can use algebra to convert it into a $\frac{0}{0}$ type limit, by combining the two fractions, as follows.

$$
\frac{1}{x-1}-\frac{2}{x^{2}-1}=\frac{(x+1)-2)}{x^{2}-1}=\frac{x-1}{x^{2}-1} .
$$

This becomes the problem of Example 1.

