Arc length and surface area computing

1. Arc length computing. Using the a line segment to approximate a small arc piece, the length of the small arc piece can be approximated by

$$ds \simeq \sqrt{(dx)^2 + (dy)^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy.$$

The total length of the whole arc can then be obtained by adding up all lengths of the small arc pieces in the Riemann sum sense under a limiting process, which leads to (with x bounds given as an example)

Arc length
$$=\int_{a}^{b} \sqrt{1+\left(\frac{dy}{dx}\right)^2} dx.$$

2. Surface area computing. The surface generated by rotating a smooth arc C around an axis. Then area of the corresponding surface generated by a small piece of arc with length ds equals

 $dA = 2\pi$ (distance from the arc piece to the ration axis) ds.

The area of the whole surface is then (assuming the axis of rotation is parallel to the x-axis, and the arc C has x bounds a and b)

Area
$$= 2\pi \int_a^b$$
 (distance from the arc piece to the ration axis) $\sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$.

If the axis of rotation is parallel to the y-axis, then changes should be made accordingly.

Example 1 Find the length of an arc C which is given by $y = \frac{1}{6}x^3 + \frac{1}{2x}$ from x = 1 to x = 3. **Solution**: First compute $\frac{dy}{dx}$, and ds:

$$\frac{dy}{dx} = \frac{1}{2}x^2 - \frac{1}{2}x^{-2}.$$

Thus

$$\left(\frac{dy}{dx}\right)^2 = \left(\frac{1}{2}x^2 - \frac{1}{2}x^{-2}\right)^2 = \frac{1}{4}x^4 - \frac{2}{4} + \frac{1}{4}x^{-4},$$

and so

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \sqrt{\frac{(x^2 + x^{-2})^2}{4}} dx = \frac{x^2 + x^{-2}}{2} dx$$

It follows that

Arc length
$$=\int_1^3 \frac{x^2 + x^{-2}}{2} dx = \frac{14}{3}.$$

Example 2 Find the length of an arc C which is given by $x = \frac{2}{3}(y-1)^{\frac{3}{2}}$ from y = 1 to y = 5.

Solution: First compute $\frac{dx}{dy}$, and ds:

$$\frac{dx}{dy} = \frac{2}{3} \frac{3}{2} (y-1)^{\frac{1}{2}}$$
, and so $\left(\frac{dx}{dy}\right)^2 = y-1$.

Thus

Arc length
$$=\int_1^5 \sqrt{1+(y-1)} dy = \left[\frac{2y^{\frac{3}{2}}}{3}\right]_1^5 = \frac{10\sqrt{5}-2}{3}.$$

Example 3 Find the area of the surface of revolution generated by revolving the curve C which is given by $y = x^3$, $1 \le x \le 2$ about the x-axis.

Solution: First compute $\frac{dy}{dx}$, and ds:

$$\frac{dy}{dx} = 3x^2$$
, and so $ds = \sqrt{1 + 9x^4}dx$.

For each x with $1 \le x \le 2$, the distance from the corresponding arc piece to the axis of rotation is x^3 . Thus

Surface area =
$$2\pi \int_{1}^{2} x^{3} \sqrt{1 + 9x^{4}} dx = \frac{\pi}{27} (145\sqrt{145} - 10\sqrt{10}).$$

Example 4 Set up and simplify the integral that gives the surface area of revolution generated by rotation of the curve $y = x^2$, $0 \le x \le 4$ about the y-axis. (No need to evaluate the integral.)

Solution: First compute $\frac{dy}{dx}$, and ds:

$$\frac{dy}{dx} = 2x$$
, and so $ds = \sqrt{1 + 4x^2} dx$.

For each x with $0 \le x \le 4$, the distance from the corresponding arc piece to the axis of rotation is x. Thus

Surface area =
$$2\pi \int_0^4 x\sqrt{1+4x^2}dx$$
.

Example 5 Set up and simplify the integral that gives the surface area of revolution generated by rotation of the curve $y = x^2$, $0 \le x \le 4$ about the x-axis. (No need to evaluate the integral.)

Solution: First compute $\frac{dy}{dx}$, and ds:

$$\frac{dy}{dx} = 2x$$
, and so $ds = \sqrt{1 + 4x^2}dx$.

For each x with $0 \le x \le 4$, the distance from the corresponding arc piece to the axis of rotation is y which is x^2 . Thus

Surface area =
$$2\pi \int_0^4 x^2 \sqrt{1 + 4x^2} dx$$
.

Example 6 Set up and simplify the integral that gives the surface area of revolution generated by rotation of the curve $y = x^2$, $0 \le x \le 4$ about the line x = 2. (No need to evaluate the integral.)

Solution: First compute $\frac{dy}{dx}$, and ds:

$$\frac{dy}{dx} = 2x$$
, and so $ds = \sqrt{1 + 4x^2} dx$.

For each x with $0 \le x \le 4$, the distance from the corresponding arc piece to the axis of rotation is 2-x. Thus

Surface area =
$$2\pi \int_0^4 (2-x)\sqrt{1+4x^2} dx$$
.

Example 7 Set up and simplify the integral that gives the surface area of revolution generated by rotation of the curve $y = x^2$, $0 \le x \le 4$ about the line y = 4. (No need to evaluate the integral.)

Solution: First compute $\frac{dy}{dx}$, and ds:

$$\frac{dy}{dx} = 2x$$
, and so $ds = \sqrt{1 + 4x^2}dx$.

For each x with $0 \le x \le 4$, the distance from the corresponding arc piece to the axis of rotation is $4 - x^2$. Thus

Surface area =
$$2\pi \int_0^4 (4-x^2)\sqrt{1+4x^2} dx$$
.