Arc length and surface area computing

1. Arc length computing. Using the a line segment to approximate a small arc piece, the length of the small arc piece can be approximated by

$$
d s \simeq \sqrt{(d x)^{2}+(d y)^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

The total length of the whole arc can then be obtained by adding up all lengths of the small arc pieces in the Riemann sum sense under a limiting process, which leads to (with x bounds given as an example)

$$
\text { Arc length }=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

2. Surface area computing. The surface generated by rotating a smooth arc C around an axis. Then area of the corresponding surface generated by a small piece of arc with length $d s$ equals

$$
d A=2 \pi \text { (distance from the arc piece to the ration axis) } d s
$$

The area of the whole surface is then (assuming the axis of rotation is parallel to the x-axis, and the arc C has x bounds a and b)

$$
\text { Area }=2 \pi \int_{a}^{b}\left(\text { distance from the arc piece to the ration axis) } \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x\right.
$$

If the axis of rotation is parallel to the y-axis, then changes should be made accordingly.

Example 1 Find the length of an arc C which is given by $y=\frac{1}{6} x^{3}+\frac{1}{2 x}$ from $x=1$ to $x=3$.
Solution: First compute $\frac{d y}{d x}$, and $d s$:

$$
\frac{d y}{d x}=\frac{1}{2} x^{2}-\frac{1}{2} x^{-2}
$$

Thus

$$
\left(\frac{d y}{d x}\right)^{2}=\left(\frac{1}{2} x^{2}-\frac{1}{2} x^{-2}\right)^{2}=\frac{1}{4} x^{4}-\frac{2}{4}+\frac{1}{4} x^{-4}
$$

and so

$$
d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\sqrt{\frac{\left(x^{2}+x^{-2}\right)^{2}}{4}} d x=\frac{x^{2}+x^{-2}}{2} d x
$$

It follows that

$$
\text { Arc length }=\int_{1}^{3} \frac{x^{2}+x^{-2}}{2} d x=\frac{14}{3}
$$

Example 2 Find the length of an arc C which is given by $x=\frac{2}{3}(y-1)^{\frac{3}{2}}$ from $y=1$ to $y=5$.
Solution: First compute $\frac{d x}{d y}$, and $d s$:

$$
\frac{d x}{d y}=\frac{2}{3} \frac{3}{2}(y-1)^{\frac{1}{2}}, \text { and so }\left(\frac{d x}{d y}\right)^{2}=y-1
$$

Thus

$$
\text { Arc length }=\int_{1}^{5} \sqrt{1+(y-1)} d y=\left[\frac{2 y^{\frac{3}{2}}}{3}\right]_{1}^{5}=\frac{10 \sqrt{5}-2}{3}
$$

Example 3 Find the area of the surface of revolution generated by revolving the curve C which is given by $y=x^{3}, 1 \leq x \leq 2$ about the x-axis.

Solution: First compute $\frac{d y}{d x}$, and $d s$:

$$
\frac{d y}{d x}=3 x^{2}, \text { and so } d s=\sqrt{1+9 x^{4}} d x
$$

For each x with $1 \leq x \leq 2$, the distance from the corresponding arc piece to the axis of rotation is x^{3}. Thus

$$
\text { Surface area }=2 \pi \int_{1}^{2} x^{3} \sqrt{1+9 x^{4}} d x=\frac{\pi}{27}(145 \sqrt{145}-10 \sqrt{10})
$$

Example 4 Set up and simplify the integral that gives the surface area of revolution generated by rotation of the curve $y=x^{2}, 0 \leq x \leq 4$ about the y-axis. (No need to evaluate the integral.)
Solution: First compute $\frac{d y}{d x}$, and $d s$:

$$
\frac{d y}{d x}=2 x, \text { and so } d s=\sqrt{1+4 x^{2}} d x
$$

For each x with $0 \leq x \leq 4$, the distance from the corresponding arc piece to the axis of rotation is x. Thus

$$
\text { Surface area }=2 \pi \int_{0}^{4} x \sqrt{1+4 x^{2}} d x
$$

Example 5 Set up and simplify the integral that gives the surface area of revolution generated by rotation of the curve $y=x^{2}, 0 \leq x \leq 4$ about the x-axis. (No need to evaluate the integral.)
Solution: First compute $\frac{d y}{d x}$, and $d s$:

$$
\frac{d y}{d x}=2 x, \text { and so } d s=\sqrt{1+4 x^{2}} d x
$$

For each x with $0 \leq x \leq 4$, the distance from the corresponding arc piece to the axis of rotation is y which is x^{2}. Thus

$$
\text { Surface area }=2 \pi \int_{0}^{4} x^{2} \sqrt{1+4 x^{2}} d x
$$

Example 6 Set up and simplify the integral that gives the surface area of revolution generated by rotation of the curve $y=x^{2}, 0 \leq x \leq 4$ about the line $x=2$. (No need to evaluate the integral.)

Solution: First compute $\frac{d y}{d x}$, and $d s$:

$$
\frac{d y}{d x}=2 x, \text { and so } d s=\sqrt{1+4 x^{2}} d x
$$

For each x with $0 \leq x \leq 4$, the distance from the corresponding arc piece to the axis of rotation is $2-x$. Thus

$$
\text { Surface area }=2 \pi \int_{0}^{4}(2-x) \sqrt{1+4 x^{2}} d x
$$

Example 7 Set up and simplify the integral that gives the surface area of revolution generated by rotation of the curve $y=x^{2}, 0 \leq x \leq 4$ about the line $y=4$. (No need to evaluate the integral.)

Solution: First compute $\frac{d y}{d x}$, and $d s$:

$$
\frac{d y}{d x}=2 x, \text { and so } d s=\sqrt{1+4 x^{2}} d x
$$

For each x with $0 \leq x \leq 4$, the distance from the corresponding arc piece to the axis of rotation is $4-x^{2}$. Thus

$$
\text { Surface area }=2 \pi \int_{0}^{4}\left(4-x^{2}\right) \sqrt{1+4 x^{2}} d x
$$

