Volume Computing

1. Cross section technique. A solid T is placed along an axis (x-axis or y-axis, assume it to be x-axis) from lower bound a and upper bound b. If for each value x between a and b, the area of the cross section of T is $A(x)$, then

$$
\text { Volume of } T=\int_{a}^{b} A(x) d x \text {. }
$$

Note that $A(x) d x$ represents the volume of a small slice of T while $\int_{a}^{b} A(x) d x$ means adding up all such small pieces in the Riemann sum sense under a limiting process.
Determine the bounds of integration. These bounds are the coordinates of the ends of the solid. Suppose a solid T is obtained from rotating a region R about an axis. If the axis of rotation is parallel to the x-axis, then the integration bounds are x-bounds; If the axis of rotation is parallel to the y-axis, then the integration bounds are y-bounds.
2. Cylindrical shell technique. A cylindrical shell with radius r, height h and thickness Δ has volume $2 \pi d h \Delta$. To apply the shell technique to compute a volume, we first partition the solid into small shells and then add up all the volumes of the shells in the Riemann sum sense under a limiting process. Therefore, a generic form of the shell technique is

$$
\int_{a}^{b} 2 \pi \text { (distance from the shell to the axis of rotation) (height of the shell) (thickness). }
$$

Determine the bounds of integration. This is different from the cross section technique. Suppose a solid T is obtained from rotating a region R about an axis. If the axis of rotation is parallel to the x-axis, then the integration bounds are y-bounds; If the axis of rotation is parallel to the y-axis, then the integration bounds are x-bounds.

Example 1 Find volume of the solid obtained by rotating the region R bounded by $y=9-x^{2}$ and $y=0$ about x-axis.

Solution: We use cross section technique. First determine the integration bounds. As the axis of rotation is the x-axis, the bounds should be the x-coordinated of the ends of R. Note that the curves $y=9-x^{2}$ and $y=0$ intersect at $x=-3$ and $x=3$, and so lower bound $a=-3$ and upper bound $b=3$.

For each x with $-3 \leq x \leq 3$, the cross section is a circle with radius $9-x^{2}$, (the y value of the curve bounded above region R at x), and so $\mathrm{A} A(x)=\pi\left(9-x^{2}\right)^{2}$. Thus

$$
\text { Volume }=\pi \int_{-3}^{3}\left(9-x^{2}\right)^{2} d x=\pi \int_{-3}^{3}\left(81-18 x^{2}+x^{4}\right) d x=\frac{1296}{5} \pi .
$$

Example 2 Find volume of the solid obtained by rotating the region R bounded by $y=1-x^{2}$ and $y=0$ about the line $x=2$.

Cross Section Solution: As the axis of rotation is parallel to the y-axis, the bounds should be the y-coordinated of the ends of R. Note that the curves $y=1-x^{2}$ and $y=0$ bound the region from above and from below, respectively, and so lower bound $c=0$ and upper bound $d=1$.

For each y with $0 \leq y \leq 1$, the cross section of the solid at y is an annular ring with the bigger radius $r_{2}=2+\sqrt{1-y}$ and smaller radius $r_{1}=2-\sqrt{1-y}$. Thus the cross section area at y is

$$
A(y)=\pi r_{2}^{2}-\pi r_{1}^{2}=\pi\left(r_{2}^{2}-r_{1}^{2}\right)=\pi\left[(2+\sqrt{1-y})^{2}-(2-\sqrt{1-y})^{2}\right]=8 \pi \sqrt{1-y}
$$

It follows that the volume of the solid is

$$
\text { Volume }=8 \pi \int_{0}^{1} \sqrt{1-y} d y=8 \pi\left[\frac{2(1-y)^{\frac{3}{2}}}{3}\right]_{0}^{1}=\frac{16}{3} \pi
$$

Shell Technique Solution: As the axis of rotation is parallel to the y-axis, the bounds should be the x-coordinated of the ends of R for the shell technique. Note that the curves $y=1-x^{2}$ and $y=0$ intersect at $x=-1$ and $x=1$, and so lower bound $a=-1$ and upper bound $b=1$.

For each x with $-1 \leq x \leq 1$, the shell generated at x has radius $2-x$, height $1-x^{2}$, and thickness $d x$, and so the volume of this shell at x is

$$
2 \pi(2-x)\left(1-x^{2}\right) d x=2 \pi\left(2-x-2 x^{2}+x^{3}\right) d x
$$

It follows that the volume of the solid is (using properties of even and odd functions integrating on a symmetric interval)

$$
\text { Volume }=2 \pi \int_{-1}^{1}\left(2-x-2 x^{2}+x^{3}\right) d x=4 \pi\left[2 x-\frac{2 x^{3}}{3}\right]_{0}^{1}=\frac{16}{3} \pi
$$

