Fundamental Theorem of Calculus

Fundamental Theorem of Calculus (FTC) Let $f(x)$ be a continuous function on the interval $[a, b]$.
Part 1: If $F(x)$ on $[a, b]$ is defined by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

then $F^{\prime}(x)=f(x)$, for x in $[a, b]$.
Part 2: If $G(x)$ on $[a, b]$ satisfies $G^{\prime}(x)=f(x)$, then

$$
\int_{a}^{b} f(t) d t=G(b)-G(a) .
$$

Example 1 Find the the derivative of

$$
F(x)=\int_{-1}^{x}\left(t^{2}+1\right)^{17} d t
$$

Solution: Here $f(t)=\left(t^{2}+1\right)^{17}$ is a continuous function on $(-\infty, \infty)$. By the FTC,

$$
F^{\prime}(x)=f(x)=\left(x^{2}+1\right)^{17} .
$$

Example 2 Find the the derivative of

$$
F(x)=\int_{x}^{10} \sqrt{t^{2}+1} d t
$$

Solution: Note that the variable bound is the lower bound in the definition of $F(x)$. Before applying FCT, we utilize integral properties to change the bounds into the form for which FCT is applicable.

$$
F(x)=\int_{x}^{10} \sqrt{t^{2}+1} d t=-\int_{10}^{x} \sqrt{t^{2}+1} d t=\int_{10}^{x}-\sqrt{t^{2}+1} d t
$$

Now $f(t)=-\sqrt{t^{2}+1}$ is a continuous function on $(-\infty, \infty)$. Apply FCT to get

$$
F^{\prime}(x)=f(x)=-\sqrt{x^{2}+1}
$$

Example 3 Find the the derivative of

$$
F(x)=\int_{0}^{\sin x} \sqrt{t^{2}+1} d t
$$

Solution: Note that the variable bound is is a function instead of simply an " x ". Therefore, we cannot directly apply FCT. Set $u=\sin x$. The we have a function

$$
G(u)=\int_{0}^{u} \sqrt{t^{2}+1} d t
$$

for which FCT is applicable with $G^{\prime}(u)=\sqrt{u^{2}+1}$.
But what we want is $F^{\prime}(x)$. As $F(x)=G(u(x))$, we can use Chain Rule $F^{\prime}(x)=G^{\prime}(u) u^{\prime}(x)$ to get the job done:

$$
F(x)=G^{\prime}(u) u^{\prime}(x)=\sqrt{u^{2}+1} \cos x=\sqrt{\sin ^{2} x+1} \cos x .
$$

Example 4 Find the the derivative of

$$
F(x)=\int_{0}^{x^{2}} \sin \left(t^{2}\right) d t
$$

Solution: Note that the variable bound is is a function instead of simply an " x ". Therefore, we cannot directly apply FCT. Set $u=x^{2}$. The we have a function

$$
G(u)=\int_{0}^{u} \sin \left(t^{2}\right) d t
$$

for which FCT is applicable with $G^{\prime}(u)=\sin \left(u^{2}\right)$.
But what we want is $F^{\prime}(x)$. As $F(x)=G(u(x))$, we can use Chain Rule $F^{\prime}(x)=G^{\prime}(u) u^{\prime}(x)$ to get the job done:

$$
F(x)=G^{\prime}(u) u^{\prime}(x)=\sin \left(u^{2}\right)(2 x)=2 x \sin \left(x^{4}\right)
$$

