Average of a function

(1) If $f(x)$ is integrable on $[a, b]$, then the average value \bar{y} of $y=f(x)$ for x in the interval $[a, b]$ is

$$
\bar{y}=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

(2) Average Value Theorem: If $f(x)$ is integrable on $[a, b]$, then there exists a point \bar{x} in the interval $[a, b]$ such that

$$
f(\bar{x})=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

Example 1 Find the average value \bar{y} of the function $f(x)=x^{2}$ on the interval $[-4,4]$; and find a point \bar{x} in the interval $[-4,4]$ such that $f(\bar{x})=\bar{y}$.
Solution: First we compute \bar{y} :

$$
\bar{y}=\frac{1}{4-(-4)} \int_{-4}^{4} x^{2} d x=\frac{1}{8}\left[\frac{x^{3}}{3}\right]_{-4}^{4}=\frac{1}{8}\left[\frac{64}{3}-\frac{-64}{3}\right]=\frac{16}{3} .
$$

To find \bar{x}, solve the equation $f(x)=\bar{y}$ for x. That is, solve

$$
x^{2}=\frac{16}{3},
$$

for x. It follows that $x= \pm \frac{4}{\sqrt{3}}$. Either value can be \bar{x}, as both are in the interval $[-4,4]$.
Example 2 Find the average value \bar{y} of the function $f(x)=\sin (2 x)$ on the interval $\left[0, \frac{\pi}{2}\right]$.
Solution: First we compute \bar{y} :

$$
\bar{y}=\frac{1}{\frac{\pi}{2}-0} \int_{0}^{\frac{\pi}{2}} \sin (2 x) d x=-\frac{2}{\pi}\left[\frac{\cos (2 x)}{2}\right]_{0}^{\frac{\pi}{2}}=-\frac{2}{\pi}\left[\frac{\cos (\pi)}{2}-\frac{\cos (0)}{2}\right]=\frac{2}{\pi} .
$$

Example 3 Find the average value \bar{y} of the function $f(x)=|x|$ on the interval $[-1,2]$.
Solution: To compute \bar{y}, we need to evaluate the integral $\int_{-1}^{2}|x| d x$. Draw the graph of $y=|x|$ on $[-1,2]$ we find that the graph of $y=|x|$, the vertical lines $x=-1, x=2$, and the x-axis form two right triangles with area equaling $\frac{1}{2}$ and 2 , respectively. Thus :

$$
\bar{y}=\frac{1}{2-(-1)} \int_{-1}^{2}|x| d x=\frac{1}{3}\left(\frac{1}{2}+2\right)=\frac{1}{3}\left(\frac{5}{2}\right)=\frac{5}{6} .
$$

