Compute antiderivatives with some algebraic skills and substitution techniques

Facts

(1) Many antiderivatives are not in a form that allows us to immediately apply a ready to use formula. Some algebraic skills may be needed before the antidifferentiation is done, as shown in the examples below. Please recall that $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}, x^{a} x^{b}=x^{a+b}$, and $\frac{x^{a}}{x^{b}}=x^{a-b}$.
(2) From the chain rule we observe its antidifferentiation counter part:

$$
\frac{d f(u(x))}{d x}=f^{\prime}(u(x)) u^{\prime}(x) \Longleftrightarrow \int f^{\prime}(u(x)) u^{\prime}(x) d x=f(u(x))+C
$$

The key of performing this art might be in the decision of choosing $u(x)$. Make sure that our choice for $u(x)$ must make $\int f^{\prime}(u) d u=f(u)+C$ easy to determine, and $u^{\prime}(x)$ must be available in the integrand.

Example 1 Evaluate $\int \frac{2 x^{4}-3 x^{3}+5}{7 x^{2}} d x$.
Solution: There is no formula that can tell us what the answer is. In order to make use of $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C,(n \neq-1)$, we need some algebra to help us (the answer is intentionally not simplified for you to see the algebra):

$$
\begin{aligned}
\int \frac{2 x^{4}-3 x^{3}+5}{7 x^{2}} d x & =\int\left(\frac{2 x^{4}}{7 x^{2}}-\frac{3 x^{3}}{7 x^{2}}+\frac{5}{7 x^{2}}\right) d x=\frac{2}{7} \int x^{2} d x-\frac{3}{7} \int x d x+\frac{5}{7} \int x^{-2} d x \\
& =\frac{2}{7} \frac{x^{3}}{3}-\frac{3}{7} \frac{x^{2}}{2}+\frac{5}{7} \frac{x^{-1}}{-1}+C
\end{aligned}
$$

Example 2 Evaluate $\int \sqrt{x}(1-x)^{2} d x$.
Solution: No ready to use formula can help us. To use $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C,(n \neq-1)$, we need some algebra to help us (the answer is intentionally not simplified for you to see the algebra):
$\int \sqrt{x}(1-x)^{2} d x=\int x^{\frac{1}{2}}\left(1-2 x+x^{2}\right) d x=\int x^{\frac{1}{2}} d x-2 \int x^{\frac{3}{2}} d x+\int x^{\frac{5}{2}} d x=\frac{2 x^{\frac{3}{2}}}{3}-2 \frac{2 x^{\frac{5}{2}}}{5}+\frac{2 x^{\frac{7}{2}}}{7}+C$.

Example 3 Evaluate $\int \frac{1}{(4 x+7)^{6}} d x$.

Solution: $\operatorname{Try} u=4 x+7$. Then $u^{\prime}=4$, and $\frac{1}{(4 x+7)^{6}}=u^{-6}$. Therefore,

$$
\int \frac{1}{(4 x+7)^{6}} d x=\frac{1}{4} \int \frac{1}{(4 x+7)^{6}} 4 d x=\frac{1}{4} \int u^{-6} d u=\frac{1}{4} \frac{u^{-5}}{-5}+C=-\frac{1}{20(4 x+7)^{5}}+C .
$$

Example 4 Evaluate $\int \frac{x^{2}}{\sqrt[3]{x^{3}+1}} d x$.
Solution: Try $u=x^{3}+1$. Then $u^{\prime}=3 x^{2}$. Note that we do have an x^{2} in the numerator, and $\frac{1}{\sqrt[3]{x^{3}+1}}=u^{-\frac{1}{3}}$. Therefore,

$$
\int \frac{x^{2}}{\sqrt[3]{x^{3}+1}} d x=\frac{1}{3} \int \frac{1}{\sqrt[3]{x^{3}+1}} 3 x^{2} d x=\frac{1}{3} \int u^{-\frac{1}{3}} d u=\frac{1}{3} \frac{u^{\frac{2}{3}}}{\frac{2}{3}}+C=\frac{1}{2}\left(x^{3}+1\right)^{\frac{2}{3}}+C .
$$

Example 5 Evaluate $\int \cos ^{3} x \sin x d x$.
Solution: Try $u=\cos x$. Then $u^{\prime}=-\sin x$. Note that we do have a $\sin x$ in the integrand, and $\cos ^{x}=u^{3}$. Therefore,

$$
\int \cos ^{3} x \sin x d x=-\int \cos ^{3} x(-\sin x) d x=-\int u^{3} d u=-\frac{u^{4}}{4}+C=-\frac{\cos ^{4} x}{4}+C .
$$

Example 6 Solve the initial value problem

$$
\frac{d y}{d x}=\sqrt{x+9} ; y(-5)=\frac{1}{3} .
$$

Solution: We need to find a function $y(x)$ that satisfies the differentiation equation and the initial condition. Proceed the following two steps.
(Step 1) we first compute (with $u=x+9$),

$$
y(x)=\int \sqrt{x+9} d x=\frac{2(x+9)^{\frac{3}{2}}}{3}+C .
$$

(Step 2) Use the initial condition $y(-5)=\frac{1}{3}$ to determine C :

$$
\frac{1}{3}=y(-5)=\frac{2(-5+9)^{\frac{3}{2}}}{3}+C=\frac{16}{3}+C \Longrightarrow C=-5
$$

Thus the answer for $y(x)$ is

$$
y(x)=\frac{2(x+9)^{\frac{3}{2}}}{3}-5 .
$$

