## Study the behavior of a function at infinity and asymptotes of the graph of a function

## Facts

(1) Given a polynomial $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with $a_{n} \neq 0$, the leading coefficient of $f(x)$ is $a_{n}$ and the leading term is $a_{n} x^{n}$. When $|x|$ is sufficiently large, (in other words, when $|x| \rightarrow \infty)$, the behavior of $f(x)$ is similar to that of $a_{n} x^{n}$.
(2) The same conclusion can be made for power functions.
(3) Given a function $f(x)$, a vertical line $x=a$ is a vertical asymptote of the graph $y=f(x)$ if

$$
\text { either } \lim _{x \rightarrow a^{-}} f(x)= \pm \infty, \text { or } \lim _{x \rightarrow a^{+}} f(x)= \pm \infty
$$

(4) Given a function $f(x)$, a horizontal line $y=L$ is a horizontal asymptote of the graph $y=f(x)$ if

$$
\text { either } \lim _{x \rightarrow-\infty} f(x)=L, \text { or } \lim _{x \rightarrow \infty} f(x)=L
$$

(5) Given a function $f(x)$, a line $y=m x+b$ is a slant asymptote of the graph $y=f(x)$ if

$$
\text { either } \lim _{x \rightarrow-\infty}[f(x)-(m x+b)]=0, \text { or } \lim _{x \rightarrow \infty}[f(x)-(m x+b)]=0
$$

Example 1 Compute the limit

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+x-2}{x^{2}-100}
$$

Solution: At infinity, a polynomial's behavior is dominated by its leading term and so

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+x-2}{x^{2}-100}=\lim _{x \rightarrow \infty} \frac{2 x^{2}}{x^{2}}=\lim _{x \rightarrow \infty} 2=2
$$

Example 2 Compute the limit

$$
\lim _{x \rightarrow \infty} \frac{2 x+1}{x-x \sqrt{x}}
$$

Solution: Write $x \sqrt{x}=x^{\frac{3}{2}}$. Thus in the denominator, the leading term is $-x^{\frac{3}{2}}$.

$$
\lim _{x \rightarrow \infty} \frac{2 x+1}{x-x^{\frac{3}{2}}}=\lim _{x \rightarrow \infty} \frac{2 x}{-x^{\frac{3}{2}}}=\lim _{x \rightarrow \infty} \frac{2}{-x^{\frac{1}{2}}}=0
$$

Example 3 Compute the limit

$$
\lim _{x \rightarrow-\infty} \frac{5 x^{3}+1}{7 x^{3}+4 x^{2}-2} .
$$

## Solution:

$$
\lim _{x \rightarrow-\infty} \frac{5 x^{3}+1}{7 x^{3}+4 x^{2}-2}=\lim _{x \rightarrow-\infty} \frac{5 x^{3}}{7 x^{3}}=\lim _{x \rightarrow-\infty} \frac{5}{7}=\frac{5}{7} .
$$

Example 4 Determine the asymptotes of the graph of $f(x)=\frac{1}{x^{2}-9}$.
Solution: We observe that the domain of $f(x)$ is $(-\infty,-3),(-3,3)$ and $(3, \infty)$.
To find the vertical asymptotes, we look at the discontinuities of $f(x)$. From the domain of $f(x)$, we see that $x=-3$ and $x=3$ are discontinuities of $f(x)$. Compute the limits

$$
\lim _{x \rightarrow-3^{-}} \frac{1}{x^{2}-9}=+\infty, \lim _{x \rightarrow-3^{+}} \frac{1}{x^{2}-9}=-\infty, \lim _{x \rightarrow 3^{-}} \frac{1}{x^{2}-9}=-\infty, \text { and } \lim _{x \rightarrow 3^{+}} \frac{1}{x^{2}-9}=+\infty .
$$

We conclude that $x=-3$ and $x=3$ are vertical asymptotes of $f(x)$.

To find the horizontal asymptotes, we compute the limits

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{1}{x^{2}-9}=0, \text { and } \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{1}{x^{2}-9}=0 .
$$

Thus $y=0$ is the only horizontal asymptote of $f(x)$.

